Ligand Gaussian Accelerated Molecular Dynamics (LiGaMD): Characterization of Ligand Binding Thermodynamics and Kinetics

分子动力学 化学 计算化学 配体(生物化学) 微秒 动力学 高斯分布 热力学 物理 经典力学 天文 生物化学 受体
作者
Yinglong Miao,Apurba Bhattarai,Jinan Wang
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
卷期号:16 (9): 5526-5547 被引量:108
标识
DOI:10.1021/acs.jctc.0c00395
摘要

Calculations of ligand binding free energies and kinetic rates are important for drug design. However, such tasks have proven challenging in computational chemistry and biophysics. To address this challenge, we have developed a new computational method, ligand Gaussian accelerated molecular dynamics (LiGaMD), which selectively boosts the ligand nonbonded interaction potential energy based on the Gaussian accelerated molecular dynamics (GaMD) enhanced sampling technique. Another boost potential could be applied to the remaining potential energy of the entire system in a dual-boost algorithm (LiGaMD_Dual) to facilitate ligand binding. LiGaMD has been demonstrated on host-guest and protein-ligand binding model systems. Repetitive guest binding and unbinding in the β-cyclodextrin host were observed in hundreds-of-nanosecond LiGaMD_Dual simulations. The calculated guest binding free energies agreed excellently with experimental data with <1.0 kcal/mol errors. Compared with converged microsecond-time scale conventional molecular dynamics simulations, the sampling errors of LiGaMD_Dual simulations were also <1.0 kcal/mol. Accelerations of ligand kinetic rate constants in LiGaMD simulations were properly estimated using Kramers' rate theory. Furthermore, LiGaMD allowed us to capture repetitive dissociation and binding of the benzamidine inhibitor in trypsin within 1 μs simulations. The calculated ligand binding free energy and kinetic rate constants compared well with the experimental data. In summary, LiGaMD provides a powerful enhanced sampling approach for characterizing ligand binding thermodynamics and kinetics simultaneously, which is expected to facilitate computer-aided drug design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wanci应助32采纳,获得10
刚刚
刚刚
刚刚
李沐唅发布了新的文献求助10
1秒前
1秒前
小辣椒发布了新的文献求助10
1秒前
Yziii给瀚森的求助进行了留言
2秒前
2秒前
2秒前
槑槑完成签到,获得积分10
2秒前
SUN完成签到,获得积分10
3秒前
xx完成签到,获得积分10
4秒前
HEANZ发布了新的文献求助10
4秒前
栀子_茉莉发布了新的文献求助10
4秒前
穿多点发布了新的文献求助10
4秒前
LYQ发布了新的文献求助10
4秒前
聪慧海豚发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
5秒前
晏紫苏发布了新的文献求助30
6秒前
奥拉同学发布了新的文献求助10
6秒前
6秒前
8秒前
8秒前
9秒前
9秒前
icefrog发布了新的文献求助10
9秒前
研友_VZG7GZ应助张英俊采纳,获得10
10秒前
10秒前
11秒前
11秒前
江汉小龙完成签到,获得积分10
11秒前
忧伤的烨伟完成签到,获得积分10
11秒前
天真的半莲完成签到,获得积分10
11秒前
李沐唅发布了新的文献求助10
11秒前
涤生发布了新的文献求助10
12秒前
奥拉同学完成签到,获得积分10
12秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135677
求助须知:如何正确求助?哪些是违规求助? 2786507
关于积分的说明 7777976
捐赠科研通 2442633
什么是DOI,文献DOI怎么找? 1298612
科研通“疑难数据库(出版商)”最低求助积分说明 625205
版权声明 600847