Ligand Gaussian Accelerated Molecular Dynamics (LiGaMD): Characterization of Ligand Binding Thermodynamics and Kinetics

分子动力学 化学 计算化学 配体(生物化学) 微秒 动力学 元动力学 高斯分布 热力学 化学物理 物理 经典力学 生物化学 受体 天文
作者
Yinglong Miao,Apurba Bhattarai,Jinan Wang
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
卷期号:16 (9): 5526-5547 被引量:141
标识
DOI:10.1021/acs.jctc.0c00395
摘要

Calculations of ligand binding free energies and kinetic rates are important for drug design. However, such tasks have proven challenging in computational chemistry and biophysics. To address this challenge, we have developed a new computational method, ligand Gaussian accelerated molecular dynamics (LiGaMD), which selectively boosts the ligand nonbonded interaction potential energy based on the Gaussian accelerated molecular dynamics (GaMD) enhanced sampling technique. Another boost potential could be applied to the remaining potential energy of the entire system in a dual-boost algorithm (LiGaMD_Dual) to facilitate ligand binding. LiGaMD has been demonstrated on host-guest and protein-ligand binding model systems. Repetitive guest binding and unbinding in the β-cyclodextrin host were observed in hundreds-of-nanosecond LiGaMD_Dual simulations. The calculated guest binding free energies agreed excellently with experimental data with <1.0 kcal/mol errors. Compared with converged microsecond-time scale conventional molecular dynamics simulations, the sampling errors of LiGaMD_Dual simulations were also <1.0 kcal/mol. Accelerations of ligand kinetic rate constants in LiGaMD simulations were properly estimated using Kramers' rate theory. Furthermore, LiGaMD allowed us to capture repetitive dissociation and binding of the benzamidine inhibitor in trypsin within 1 μs simulations. The calculated ligand binding free energy and kinetic rate constants compared well with the experimental data. In summary, LiGaMD provides a powerful enhanced sampling approach for characterizing ligand binding thermodynamics and kinetics simultaneously, which is expected to facilitate computer-aided drug design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助木水水采纳,获得10
2秒前
ZJHYNL完成签到,获得积分10
2秒前
蜡笔小z发布了新的文献求助10
2秒前
小丁同学完成签到,获得积分0
3秒前
Juvenile发布了新的文献求助10
3秒前
SYLH应助hiipaige采纳,获得30
3秒前
123完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
xgs完成签到,获得积分10
5秒前
wanci应助儒雅的夏山采纳,获得10
5秒前
Desamin发布了新的文献求助10
6秒前
华仔应助土豪的跳跳糖采纳,获得10
7秒前
8秒前
czz完成签到,获得积分10
8秒前
8秒前
可为完成签到,获得积分10
8秒前
oxygen完成签到,获得积分10
9秒前
勤劳梦曼完成签到,获得积分10
9秒前
刻苦大门完成签到 ,获得积分10
10秒前
10秒前
董怜寒发布了新的文献求助10
10秒前
彬墩墩发布了新的文献求助10
11秒前
czz发布了新的文献求助10
11秒前
SYLH应助张三采纳,获得10
12秒前
weimu发布了新的文献求助10
13秒前
共享精神应助RCLLL采纳,获得10
13秒前
14秒前
14秒前
越战越勇发布了新的文献求助10
14秒前
福瑞灯完成签到,获得积分10
15秒前
Mt完成签到,获得积分10
15秒前
高高一鸣完成签到 ,获得积分10
17秒前
无花果应助科研通管家采纳,获得10
17秒前
慕青应助科研通管家采纳,获得10
17秒前
ghostR应助科研通管家采纳,获得10
17秒前
爆米花应助科研通管家采纳,获得10
17秒前
CipherSage应助科研通管家采纳,获得10
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954162
求助须知:如何正确求助?哪些是违规求助? 3500212
关于积分的说明 11098471
捐赠科研通 3230734
什么是DOI,文献DOI怎么找? 1786110
邀请新用户注册赠送积分活动 869824
科研通“疑难数据库(出版商)”最低求助积分说明 801625