Engineering and Evolution of Methanol Assimilation inSaccharomyces cerevisiae

生物化学 酿酒酵母 酵母 发酵 代谢工程 甲醇 乙醛酸循环 化学 生物 新陈代谢 基因 有机化学
作者
Monica I. Espinosa,R. Axayácatl González-García,Kaspar Valgepea,Manuel R. Plan,Colin Scott,Isak S. Pretorius,Esteban Marcellin,Ian T. Paulsen,Thomas C. Williams
标识
DOI:10.1101/717942
摘要

Abstract Microbial fermentation for chemical production is becoming more broadly adopted as an alternative to petrochemical refining. Fermentation typically relies on sugar as a feedstock, however, one-carbon compounds like methanol are an attractive alternative as they can be derived from organic waste and natural gas. This study focused on engineering methanol assimilation in the yeast Saccharomyces cerevisiae. Three methanol assimilation pathways were engineered and tested: a synthetic xylulose monophosphate (XuMP), a ‘hybrid’ methanol dehydrogenase-XuMP, and a bacterial ribulose monophosphate (RuMP) pathway, with the latter identified as the most effective at assimilating methanol. Additionally, 13 C-methanol tracer analysis uncovered a native capacity for methanol assimilation in S. cerevisiae , which was optimized using Adaptive Laboratory Evolution. Three independent lineages selected in liquid methanol-yeast extract medium evolved premature stop codons in YGR067C , which encodes an uncharacterised protein that has a predicted DNA-binding domain with homology to the ADR1 transcriptional regulator. Adr1p regulates genes involved in ethanol metabolism and peroxisomal proliferation, suggesting YGR067C has a related function. When one of the evolved YGR067C mutations was reverse engineered into the parental CEN.PK113-5D strain, there were up to 5-fold increases in 13 C-labelling of intracellular metabolites from 13 C-labelled methanol when 0.1 % yeast extract was a co-substrate, and a 44 % increase in final biomass. Transcriptomics and proteomics revealed that the reconstructed YGR067C mutation results in down-regulation of genes in the TCA cycle, glyoxylate cycle, and gluconeogenesis, which would normally be up-regulated during growth on a non-fermentable carbon source. Combining the synthetic RuMP and XuMP pathways with the reconstructed Ygr067cp truncation led to further improvements in growth. These results identify a latent methylotrophic metabolism in S. cerevisiae and pave the way for further development of native and synthetic one-carbon assimilation pathways in this model eukaryote.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yu完成签到,获得积分10
刚刚
pace完成签到,获得积分10
1秒前
不配.应助一往之前采纳,获得20
1秒前
一二三完成签到,获得积分20
2秒前
Schroenius完成签到 ,获得积分10
2秒前
云瑾应助葛辉辉采纳,获得20
2秒前
2秒前
ailemonmint完成签到 ,获得积分10
3秒前
6秒前
bkagyin应助wangayting采纳,获得30
7秒前
7秒前
8秒前
可爱的函函应助睡不醒采纳,获得10
9秒前
10秒前
一往之前完成签到,获得积分10
10秒前
mayue发布了新的文献求助10
10秒前
11秒前
xzc发布了新的文献求助10
12秒前
狠毒的小龙虾完成签到,获得积分10
14秒前
Singularity应助斯文棒球采纳,获得10
16秒前
Heart发布了新的文献求助10
17秒前
情怀应助YCWZ采纳,获得10
18秒前
stuffmatter完成签到,获得积分0
18秒前
科研通AI2S应助Zzzz采纳,获得10
18秒前
XYF完成签到 ,获得积分10
18秒前
Singularity应助lily88采纳,获得10
19秒前
20秒前
平常的蜜粉完成签到,获得积分10
20秒前
Halo完成签到,获得积分10
22秒前
22秒前
23秒前
25秒前
今后应助Fury采纳,获得10
26秒前
若尘完成签到,获得积分10
27秒前
HarryBaturu发布了新的文献求助30
27秒前
gry发布了新的文献求助10
27秒前
克丽完成签到 ,获得积分10
28秒前
29秒前
JiaHongLiu完成签到,获得积分10
31秒前
Singularity应助斯文棒球采纳,获得30
33秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137922
求助须知:如何正确求助?哪些是违规求助? 2788820
关于积分的说明 7788709
捐赠科研通 2445219
什么是DOI,文献DOI怎么找? 1300219
科研通“疑难数据库(出版商)”最低求助积分说明 625878
版权声明 601046