Engineering and Evolution of Methanol Assimilation inSaccharomyces cerevisiae

生物化学 酿酒酵母 酵母 发酵 代谢工程 甲醇 乙醛酸循环 化学 生物 新陈代谢 基因 有机化学
作者
Monica I. Espinosa,R. Axayácatl González-García,Kaspar Valgepea,Manuel R. Plan,Colin Scott,Isak S. Pretorius,Esteban Marcellin,Ian T. Paulsen,Thomas C. Williams
标识
DOI:10.1101/717942
摘要

Abstract Microbial fermentation for chemical production is becoming more broadly adopted as an alternative to petrochemical refining. Fermentation typically relies on sugar as a feedstock, however, one-carbon compounds like methanol are an attractive alternative as they can be derived from organic waste and natural gas. This study focused on engineering methanol assimilation in the yeast Saccharomyces cerevisiae. Three methanol assimilation pathways were engineered and tested: a synthetic xylulose monophosphate (XuMP), a ‘hybrid’ methanol dehydrogenase-XuMP, and a bacterial ribulose monophosphate (RuMP) pathway, with the latter identified as the most effective at assimilating methanol. Additionally, 13 C-methanol tracer analysis uncovered a native capacity for methanol assimilation in S. cerevisiae , which was optimized using Adaptive Laboratory Evolution. Three independent lineages selected in liquid methanol-yeast extract medium evolved premature stop codons in YGR067C , which encodes an uncharacterised protein that has a predicted DNA-binding domain with homology to the ADR1 transcriptional regulator. Adr1p regulates genes involved in ethanol metabolism and peroxisomal proliferation, suggesting YGR067C has a related function. When one of the evolved YGR067C mutations was reverse engineered into the parental CEN.PK113-5D strain, there were up to 5-fold increases in 13 C-labelling of intracellular metabolites from 13 C-labelled methanol when 0.1 % yeast extract was a co-substrate, and a 44 % increase in final biomass. Transcriptomics and proteomics revealed that the reconstructed YGR067C mutation results in down-regulation of genes in the TCA cycle, glyoxylate cycle, and gluconeogenesis, which would normally be up-regulated during growth on a non-fermentable carbon source. Combining the synthetic RuMP and XuMP pathways with the reconstructed Ygr067cp truncation led to further improvements in growth. These results identify a latent methylotrophic metabolism in S. cerevisiae and pave the way for further development of native and synthetic one-carbon assimilation pathways in this model eukaryote.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
忘羡222发布了新的文献求助20
2秒前
丰富猕猴桃完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
JamesPei应助咿咿呀呀采纳,获得10
3秒前
www完成签到,获得积分10
3秒前
科研通AI2S应助Jenny采纳,获得10
4秒前
limin完成签到,获得积分10
5秒前
5秒前
风格完成签到,获得积分10
6秒前
情怀应助专心搞学术采纳,获得20
7秒前
7秒前
zeke发布了新的文献求助10
7秒前
不爱吃糖发布了新的文献求助10
8秒前
852应助冷傲迎梦采纳,获得10
9秒前
陶醉觅夏发布了新的文献求助200
10秒前
10秒前
exile完成签到,获得积分10
11秒前
朱一龙发布了新的文献求助10
11秒前
mawenting完成签到 ,获得积分10
13秒前
zeke完成签到,获得积分10
14秒前
科研通AI5应助solobang采纳,获得10
15秒前
15秒前
小宇OvO发布了新的文献求助10
16秒前
16秒前
忘羡222完成签到,获得积分10
16秒前
专一发布了新的文献求助10
18秒前
跳跃曼文完成签到,获得积分10
19秒前
干将莫邪完成签到,获得积分10
20秒前
SYLH应助exile采纳,获得10
20秒前
小二郎应助魔幻的从梦采纳,获得10
21秒前
22秒前
雪鸽鸽发布了新的文献求助10
22秒前
23秒前
24秒前
24秒前
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824