化学
石墨烯
催化作用
氮化硼
反键分子轨道
极化(电化学)
电场
结晶学
氮气
电化学
硼
Atom(片上系统)
纳米技术
光化学
材料科学
电子
原子轨道
物理化学
电极
有机化学
嵌入式系统
物理
量子力学
计算机科学
作者
Shaobin Tang,Qian Dang,Tianyong Liu,Shi‐Yong Zhang,Zhonggao Zhou,Xiaokang Li,Xijun Wang,Edward Sharman,Yi Luo,Jun Jiang
摘要
Developing efficient single-atom catalysts (SACs) for nitrogen fixation is of great importance while remaining a great challenge. The lack of an effective strategy to control the polarization electric field of SACs limits their activity and selectivity. Here, using first-principles calculations, we report that a single transition metal (TM) atom sandwiched between hexagonal boron nitride (h-BN) and graphene sheets (namely, BN/TM/G) acts as an efficient SAC for the electrochemical nitrogen reduction reaction (NRR). These sandwich structures realize stable and tunable interfacial polarization fields that enable the TM atom to donate electrons to a neighboring B atom as the active site. As a result, the partially occupied pz orbital of a B atom can form B-to-N π-back bonding with the antibonding state of N2, thus weakening the N≡N bond. The not-strong-not-weak electric field on the h-BN surface further promotes N2 adsorption and activation. The NRR catalytic activity of the BN/TM/G system is highly correlated with the degree of positively polarized charges on the TM atom. In particular, BN/Ti/G and BN/V/G are identified as promising NRR catalysts with high stability, offering excellent energy efficiency and suppression of the competing hydrogen evolution reaction.
科研通智能强力驱动
Strongly Powered by AbleSci AI