Realizing a Not-Strong-Not-Weak Polarization Electric Field in Single-Atom Catalysts Sandwiched by Boron Nitride and Graphene Sheets for Efficient Nitrogen Fixation

化学 石墨烯 催化作用 氮化硼 反键分子轨道 极化(电化学) 电场 结晶学 氮气 电化学 Atom(片上系统) 纳米技术 光化学 材料科学 电子 原子轨道 物理化学 电极 有机化学 嵌入式系统 物理 量子力学 计算机科学
作者
Shaobin Tang,Qian Dang,Tianyong Liu,Shi‐Yong Zhang,Zhonggao Zhou,Xiaokang Li,Xijun Wang,Edward Sharman,Yi Luo,Jun Jiang
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:142 (45): 19308-19315 被引量:251
标识
DOI:10.1021/jacs.0c09527
摘要

Developing efficient single-atom catalysts (SACs) for nitrogen fixation is of great importance while remaining a great challenge. The lack of an effective strategy to control the polarization electric field of SACs limits their activity and selectivity. Here, using first-principles calculations, we report that a single transition metal (TM) atom sandwiched between hexagonal boron nitride (h-BN) and graphene sheets (namely, BN/TM/G) acts as an efficient SAC for the electrochemical nitrogen reduction reaction (NRR). These sandwich structures realize stable and tunable interfacial polarization fields that enable the TM atom to donate electrons to a neighboring B atom as the active site. As a result, the partially occupied pz orbital of a B atom can form B-to-N π-back bonding with the antibonding state of N2, thus weakening the N≡N bond. The not-strong-not-weak electric field on the h-BN surface further promotes N2 adsorption and activation. The NRR catalytic activity of the BN/TM/G system is highly correlated with the degree of positively polarized charges on the TM atom. In particular, BN/Ti/G and BN/V/G are identified as promising NRR catalysts with high stability, offering excellent energy efficiency and suppression of the competing hydrogen evolution reaction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
1秒前
1秒前
Ava应助杨潇丶丶采纳,获得10
1秒前
1秒前
1秒前
抹茶发布了新的文献求助10
2秒前
fantasy完成签到,获得积分20
2秒前
ZYY完成签到,获得积分20
2秒前
2秒前
HWL完成签到,获得积分10
3秒前
桃子e发布了新的文献求助10
3秒前
wangli发布了新的文献求助10
3秒前
3秒前
3秒前
llj完成签到,获得积分10
3秒前
木木 12完成签到,获得积分10
3秒前
小半仙发布了新的文献求助10
4秒前
4秒前
4秒前
懒得理完成签到 ,获得积分10
4秒前
体贴半仙完成签到,获得积分20
4秒前
yu完成签到,获得积分10
5秒前
科研通AI6应助中微子采纳,获得10
5秒前
赘婿应助Quentin9998采纳,获得10
5秒前
酷波er应助dongjingbutaire采纳,获得10
5秒前
猪猪猪发布了新的文献求助10
5秒前
研友_8y2G0L发布了新的文献求助30
5秒前
牟若溪发布了新的文献求助10
5秒前
内向玉兰完成签到,获得积分10
6秒前
夜星子发布了新的文献求助10
6秒前
务实的手套完成签到,获得积分10
7秒前
所所应助唠叨的以柳采纳,获得10
7秒前
SciGPT应助海绵宝宝采纳,获得10
8秒前
宋世伟发布了新的文献求助10
8秒前
水123发布了新的文献求助10
8秒前
lili发布了新的文献求助10
9秒前
CipherSage应助欢喜幻桃采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667927
求助须知:如何正确求助?哪些是违规求助? 4888141
关于积分的说明 15122164
捐赠科研通 4826686
什么是DOI,文献DOI怎么找? 2584281
邀请新用户注册赠送积分活动 1538179
关于科研通互助平台的介绍 1496440