Current Status of Tissue Clearing and the Path Forward in Neuroscience

计算机科学 清理 仿形(计算机编程) 可视化 脑组织 人工智能 可扩展性 神经影像学 神经科学 数据科学 人机交互 生物 财务 数据库 操作系统 经济
作者
Jiajia Zhao,H. M. Lai,Yuwei Qi,Dian He,Haitao Sun
出处
期刊:ACS Chemical Neuroscience [American Chemical Society]
卷期号:12 (1): 5-29 被引量:15
标识
DOI:10.1021/acschemneuro.0c00563
摘要

Due to the complexity and limited availability of human brain tissues, for decades, pathologists have sought to maximize information gained from individual samples, based on which (patho)physiological processes could be inferred. Recently, new understandings of chemical and physical properties of biological tissues and multiple chemical profiling have given rise to the development of scalable tissue clearing methods allowing superior optical clearing of across-the-scale samples. In the past decade, tissue clearing techniques, molecular labeling methods, advanced laser scanning microscopes, and data visualization and analysis have become commonplace. Combined, they have made 3D visualization of brain tissues with unprecedented resolution and depth widely accessible. To facilitate further advancements and applications, here we provide a critical appraisal of these techniques. We propose a classification system of current tissue clearing and expansion methods that allows users to judge the applicability of individual ones to their questions, followed by a review of the current progress in molecular labeling, optical imaging, and data processing to demonstrate the whole 3D imaging pipeline based on tissue clearing and downstream techniques for visualizing the brain. We also raise the path forward of tissue-clearing-based imaging technology, that is, integrating with state-of-the-art techniques, such as multiplexing protein imaging, in situ signal amplification, RNA detection and sequencing, super-resolution imaging techniques, multiomics studies, and deep learning, for drawing the complete atlas of the human brain and building a 3D pathology platform for central nervous system disorders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助咸鱼咸采纳,获得10
2秒前
李爱国应助小葛采纳,获得10
3秒前
4秒前
5秒前
慕容飞凤完成签到,获得积分10
6秒前
mnjknm发布了新的文献求助10
7秒前
852应助糖吃小孩采纳,获得10
7秒前
8秒前
cindy完成签到,获得积分10
9秒前
重要无招完成签到,获得积分10
9秒前
9秒前
小葛完成签到,获得积分10
12秒前
hao应助美羊羊采纳,获得30
12秒前
13秒前
英姑应助陈伟杰采纳,获得10
13秒前
jewelliang发布了新的文献求助10
14秒前
不爱科研发布了新的文献求助10
14秒前
斯文败类应助123采纳,获得10
16秒前
搜集达人应助123采纳,获得10
16秒前
17秒前
18秒前
时尚的电脑完成签到 ,获得积分10
18秒前
丘比特应助溜溜采纳,获得10
20秒前
20秒前
Jack应助QP采纳,获得20
22秒前
殷勤的咖啡完成签到,获得积分10
24秒前
蔡蔡不菜菜完成签到,获得积分10
24秒前
25秒前
ixueyi发布了新的文献求助200
26秒前
专一的身影完成签到 ,获得积分10
29秒前
糖吃小孩发布了新的文献求助10
29秒前
dava应助科研通管家采纳,获得10
31秒前
31秒前
Orange应助科研通管家采纳,获得10
31秒前
Ava应助科研通管家采纳,获得10
31秒前
Akim应助科研通管家采纳,获得10
31秒前
深情安青应助科研通管家采纳,获得10
31秒前
科研通AI2S应助科研通管家采纳,获得10
31秒前
爆米花应助科研通管家采纳,获得20
31秒前
烟花应助科研通管家采纳,获得10
31秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 930
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3266172
求助须知:如何正确求助?哪些是违规求助? 2905947
关于积分的说明 8336242
捐赠科研通 2576359
什么是DOI,文献DOI怎么找? 1400460
科研通“疑难数据库(出版商)”最低求助积分说明 654786
邀请新用户注册赠送积分活动 633661