PsePSSM-based Prediction for the Protein-ATP Binding Sites

计算机科学 人工智能 职位(财务) 模式识别(心理学) 二元分类 航程(航空) 特征提取 特征(语言学) 数据挖掘 机器学习 工程类 支持向量机 航空航天工程 哲学 经济 财务 语言学
作者
Qian Li,Jiang Yu,Yan Yu Xuan,Yuan Chen,Tan SiQiao
出处
期刊:Current Bioinformatics [Bentham Science]
卷期号:16 (4): 576-582 被引量:8
标识
DOI:10.2174/1574893615999200918183543
摘要

Background: Predicting the protein-ATP binding sites is a highly unbalanced binary classification problem, and higher precision prediction through the machine learning methods is of great significance to the researches on proteins’ functions and the design of drugs. Objective: Most existing researches typically select 17aa as the length of window by experience, and extract features by the Position-specific Scoring Matrix (PSSM), and then construct models predicting with SVC. However, the independent prediction values obtained in these researches are either over-high (ACC) or lower (MCC), and there is therefore a larger improvement room in the prediction precision. Methods: This paper utilizes the mutual information, I, to define the window length of 15aa, and the Pseudo Position Specific Scoring Matrix (PsePSSM), which is more fault-tolerance, to extract the features, and then train multiple 1:1 SVC classifiers to model, and finally perform the simple votings. Results: The prediction results over two protein-ATP binding site datasets, the ATP168 and the ATP227, are totally superior to the independent prediction results obtained in the Reference Feature Extraction Approach. And in our approach, the MCC values are respectively improved, from the range of 0.3110 ~ 0.5360 and the range of 0.3060 ~ 0.553, to 0.7512 and 0.7106. Conclusion: Further, we explain why the PsePSSM approach is more fault-tolerance. This approach has a promising application prospect in the feature-extraction of protein sequences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Singularity应助苏苏采纳,获得10
1秒前
1秒前
活泼人生完成签到 ,获得积分10
3秒前
问问完成签到,获得积分10
4秒前
5秒前
芷烟发布了新的文献求助10
5秒前
AeroY完成签到,获得积分10
6秒前
mavissss完成签到 ,获得积分10
6秒前
RTena.发布了新的文献求助10
8秒前
今我来思发布了新的文献求助10
9秒前
哈哈哈666发布了新的文献求助10
10秒前
zhizhi完成签到,获得积分20
11秒前
Xiaoma完成签到,获得积分10
11秒前
星露谷老农完成签到,获得积分10
13秒前
丘比特应助给好评采纳,获得10
15秒前
16秒前
17秒前
Jiang完成签到,获得积分10
17秒前
伶俐的无颜完成签到 ,获得积分10
17秒前
17秒前
19秒前
传奇3应助会撒娇的身影采纳,获得10
20秒前
芷烟完成签到,获得积分10
20秒前
李爱国应助KYT采纳,获得10
21秒前
paul发布了新的文献求助10
21秒前
wjh应助xicifish采纳,获得10
21秒前
凡是关于你的关注了科研通微信公众号
21秒前
程小黑发布了新的文献求助10
22秒前
Owen应助布丁采纳,获得10
23秒前
无花果应助诶诶诶采纳,获得10
23秒前
23秒前
bkagyin应助木子木子粒采纳,获得10
24秒前
白糖发布了新的文献求助10
24秒前
鲨鱼的角应助淡淡灵珊采纳,获得10
27秒前
Jiang发布了新的文献求助10
28秒前
cocolu应助超级白昼采纳,获得10
29秒前
Tong应助明理的又柔采纳,获得10
29秒前
Singularity举报小旭不会飞求助涉嫌违规
30秒前
30秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459694
求助须知:如何正确求助?哪些是违规求助? 3053955
关于积分的说明 9039688
捐赠科研通 2743333
什么是DOI,文献DOI怎么找? 1504778
科研通“疑难数据库(出版商)”最低求助积分说明 695410
邀请新用户注册赠送积分活动 694699