PsePSSM-based Prediction for the Protein-ATP Binding Sites

计算机科学 人工智能 职位(财务) 模式识别(心理学) 二元分类 航程(航空) 特征提取 特征(语言学) 数据挖掘 机器学习 工程类 支持向量机 经济 航空航天工程 语言学 哲学 财务
作者
Qian Li,Jiang Yu,Yan Yu Xuan,Yuan Chen,Tan SiQiao
出处
期刊:Current Bioinformatics [Bentham Science]
卷期号:16 (4): 576-582 被引量:8
标识
DOI:10.2174/1574893615999200918183543
摘要

Background: Predicting the protein-ATP binding sites is a highly unbalanced binary classification problem, and higher precision prediction through the machine learning methods is of great significance to the researches on proteins’ functions and the design of drugs. Objective: Most existing researches typically select 17aa as the length of window by experience, and extract features by the Position-specific Scoring Matrix (PSSM), and then construct models predicting with SVC. However, the independent prediction values obtained in these researches are either over-high (ACC) or lower (MCC), and there is therefore a larger improvement room in the prediction precision. Methods: This paper utilizes the mutual information, I, to define the window length of 15aa, and the Pseudo Position Specific Scoring Matrix (PsePSSM), which is more fault-tolerance, to extract the features, and then train multiple 1:1 SVC classifiers to model, and finally perform the simple votings. Results: The prediction results over two protein-ATP binding site datasets, the ATP168 and the ATP227, are totally superior to the independent prediction results obtained in the Reference Feature Extraction Approach. And in our approach, the MCC values are respectively improved, from the range of 0.3110 ~ 0.5360 and the range of 0.3060 ~ 0.553, to 0.7512 and 0.7106. Conclusion: Further, we explain why the PsePSSM approach is more fault-tolerance. This approach has a promising application prospect in the feature-extraction of protein sequences.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Hello应助稳重的雅绿采纳,获得10
1秒前
1秒前
ty完成签到,获得积分10
1秒前
baobaot发布了新的文献求助10
1秒前
Yi完成签到,获得积分10
1秒前
1秒前
1秒前
搜集达人应助luym采纳,获得10
2秒前
2秒前
完美世界应助555采纳,获得10
2秒前
小二郎应助jl采纳,获得10
2秒前
2秒前
呼安完成签到,获得积分10
2秒前
2秒前
3秒前
isabelwy完成签到,获得积分10
3秒前
3秒前
3秒前
Faith完成签到,获得积分10
4秒前
可爱的弘文完成签到,获得积分10
4秒前
4秒前
4秒前
乔木木完成签到,获得积分10
4秒前
4秒前
小飞鼠发布了新的文献求助10
4秒前
唐飒发布了新的文献求助10
4秒前
痴痴的噜完成签到,获得积分10
5秒前
5秒前
rouxi发布了新的文献求助10
5秒前
能干冰露完成签到,获得积分10
5秒前
5秒前
猴哥完成签到,获得积分10
5秒前
6秒前
无私鹏涛完成签到,获得积分10
6秒前
Criminology34应助Tian采纳,获得10
6秒前
7秒前
唐文硕发布了新的文献求助10
7秒前
7秒前
fhz发布了新的文献求助20
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836