A Branch-and-Price Algorithm for the Vehicle Routing Problem with Stochastic Demands and Probabilistic Duration Constraints

概率逻辑 数学优化 车辆路径问题 计算机科学 持续时间(音乐) 概率分布 泊松分布 布线(电子设计自动化) 灵敏度(控制系统) 数学 工程类 统计 人工智能 艺术 文学类 计算机网络 电子工程
作者
Alexandre M. Florio,Richard F. Hartl,Stefan Minner,Juan‐José Salazar‐González
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
卷期号:55 (1): 122-138 被引量:26
标识
DOI:10.1287/trsc.2020.1002
摘要

In many routing applications, it is necessary to place limits on the duration of the individual routes. When demands are stochastic and restocking during route execution is allowed, the durations of the resulting routes are also stochastic. In this paper, we consider the vehicle routing problem with stochastic demands and probabilistic duration constraints (VRPSD-PDC). We assume optimal restocking, which means that, during the route execution, replenishment trips to the depot are performed in an optimal way. The resulting optimization problem calls for a set of routes with minimal total expected cost for visiting all customers, such that the duration of each route, with a given probability, does not exceed a prescribed limit. We solve the VRPSD-PDC with a novel branch-and-price algorithm. An orienteering-based completion bound is proposed to control the growth of labels in the pricing algorithm. Feasibility of a priori routes is verified by applying Chebyshev’s bounds, by Monte Carlo simulation and statistical inference, or by analytically deriving the distribution of the route duration. Consistency checks are incorporated into the branch-and-price framework to detect statistical errors. Computational experiments are performed with demands following binomial, Poisson, or negative binomial probability distributions and with duration constraints enforced at the levels of 90%, 95%, and 98%. Optimal solutions to the VRPSD-PDC may contain routes that serve an expected demand that is larger than the capacity of the vehicle. These solutions actively employ optimal restocking to reduce traveling costs and the number of required vehicles. Sensitivity analyses indicate that high demand variability negatively impacts the solution, both in terms of total expected cost and the number of routes employed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孙奕完成签到,获得积分10
1秒前
1秒前
俟天晴完成签到,获得积分10
1秒前
淡定问芙发布了新的文献求助30
2秒前
4秒前
Lewis完成签到,获得积分10
5秒前
orixero应助TranYan采纳,获得10
5秒前
猪猪hero发布了新的文献求助10
7秒前
8秒前
今后应助333采纳,获得10
9秒前
pu发布了新的文献求助10
10秒前
Akim应助梓榆采纳,获得10
11秒前
劼大大完成签到,获得积分10
11秒前
最优解完成签到 ,获得积分20
12秒前
12秒前
通~发布了新的文献求助10
12秒前
一段乐多完成签到,获得积分10
13秒前
13秒前
13秒前
给我找完成签到,获得积分10
14秒前
桐桐应助Yuki0616采纳,获得10
14秒前
小马甲应助鸣隐采纳,获得10
14秒前
ycd完成签到,获得积分10
15秒前
ark861023完成签到,获得积分10
15秒前
淡定问芙完成签到,获得积分10
15秒前
斯文败类应助惠惠采纳,获得10
16秒前
16秒前
Meowly完成签到,获得积分10
16秒前
17秒前
17秒前
陶醉觅夏发布了新的文献求助10
17秒前
pu完成签到,获得积分10
17秒前
小灵通完成签到,获得积分10
17秒前
给我找发布了新的文献求助10
17秒前
科研通AI2S应助LIn采纳,获得10
18秒前
gaga完成签到,获得积分10
18秒前
_Charmo完成签到,获得积分10
18秒前
Slemon完成签到,获得积分10
18秒前
谦谦姜完成签到,获得积分10
20秒前
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794