Performance comparison of particle tracking velocimetry (PTV) and particle image velocimetry (PIV) with long-exposure particle streaks

条纹 粒子图像测速 粒子跟踪测速 粒子(生态学) 测速 物理 人工智能 算法 计算机科学 光学 湍流 机械 地质学 海洋学
作者
Mumtaz Hussain Qureshi,Wei-Hsin Tien,Yi‐Jiun Lin
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:32 (2): 024008-024008 被引量:18
标识
DOI:10.1088/1361-6501/abb747
摘要

Abstract Particle tracking velocimetry (PTV) and particle image velocimetry (PIV) are popular experimental methods to quantitatively measure flow fields. In many practical applications, hardware limitations result in longer exposure times, causing particle images to elongate into particle streak images. In this study, the performances of PTV and PIV in relation to particle streak images are evaluated systematically by means of both synthetic and experimental images. For the synthetic images, particle streak images are created via the integration over time of the standard Gaussian approximation of particle images, plus the effects of exposure time, and parameters such as particle image diameter, intensity, and density were investigated in terms of the velocity fields of a 1D uniform flow and the rotational 2D Hill’s vortex. The results show that PTV performs well for short exposure times, and its peak-finding criteria can be verified for nondimensional exposure times E T up to 10. As the E T increases from 10 to 70, the reliability of the PTV algorithm drops significantly, while the yield drops only slightly. Longer exposure times cause an increase in the number of RMS displacement errors; the PTV algorithm is more likely to fail when particle diameter, image intensity and particle density are larger. The displacement error of PTV RMS ranges from 0.064 pixels to 0.157 pixels. In comparison to PTV, PIV is more robust in relation to streak images with long-exposure times, and not sensitive to the effects of particle image diameter and intensity. The RMS dispersion errors for PIV range from 0.015 pixels to 0.316 pixels. A comparison of the RMS displacement errors exhibited by PIV and PTV shows that where the seeding of particles is not an issue, PIV is more robust, and can handle long-exposure streak images. The results of experimental streak images show that PIV produces lower RMS dispersion error values at low Reynolds numbers, whereas it produces more significant errors for high Reynolds numbers. At regions of low seeding density, PTV can resolve local fluid motions with superior accuracy, but it is vulnerable to high exposure time. Based on these results, where a longer exposure time is a requirement for an application, the use of PIV is recommended, by virtue of its robustness to image streaking, provided that a good seeding and high particle image density are available. For applications such as some microscale flows or flows with separation or recirculation regions, PTV is more capable of fulfilling their requirements.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
GHX完成签到 ,获得积分10
1秒前
李杰发布了新的文献求助10
2秒前
2秒前
Du完成签到,获得积分10
3秒前
朱泳钦完成签到,获得积分10
3秒前
3秒前
小蘑菇发布了新的文献求助10
3秒前
可爱的函函应助天真醉波采纳,获得10
4秒前
隐形的baby完成签到,获得积分10
5秒前
6秒前
话藏心发布了新的文献求助10
8秒前
正直的雅绿完成签到,获得积分10
8秒前
科研通AI6应助safari采纳,获得30
10秒前
10秒前
平常的老头完成签到,获得积分10
11秒前
ding应助Du采纳,获得10
11秒前
朱泳钦发布了新的文献求助10
12秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
15秒前
15秒前
GGMJ发布了新的文献求助10
15秒前
wxyshare应助自由的中蓝采纳,获得10
17秒前
17秒前
机智灯泡发布了新的文献求助10
19秒前
19秒前
852应助百羊采纳,获得10
19秒前
文静萤发布了新的文献求助10
20秒前
隐形的baby发布了新的文献求助10
20秒前
隐形曼青应助GGMJ采纳,获得10
20秒前
旺仔不甜完成签到,获得积分10
21秒前
丘比特应助June采纳,获得10
23秒前
liusha发布了新的文献求助10
24秒前
Hello应助mira采纳,获得10
26秒前
27秒前
科研通AI6应助小易采纳,获得10
28秒前
lxt完成签到,获得积分10
30秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536873
求助须知:如何正确求助?哪些是违规求助? 4624540
关于积分的说明 14592255
捐赠科研通 4564957
什么是DOI,文献DOI怎么找? 2502101
邀请新用户注册赠送积分活动 1480843
关于科研通互助平台的介绍 1452073