Performance comparison of particle tracking velocimetry (PTV) and particle image velocimetry (PIV) with long-exposure particle streaks

条纹 粒子图像测速 粒子跟踪测速 粒子(生态学) 测速 物理 人工智能 算法 计算机科学 光学 湍流 机械 地质学 海洋学
作者
Mumtaz Hussain Qureshi,Wei-Hsin Tien,Yi‐Jiun Lin
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:32 (2): 024008-024008 被引量:18
标识
DOI:10.1088/1361-6501/abb747
摘要

Abstract Particle tracking velocimetry (PTV) and particle image velocimetry (PIV) are popular experimental methods to quantitatively measure flow fields. In many practical applications, hardware limitations result in longer exposure times, causing particle images to elongate into particle streak images. In this study, the performances of PTV and PIV in relation to particle streak images are evaluated systematically by means of both synthetic and experimental images. For the synthetic images, particle streak images are created via the integration over time of the standard Gaussian approximation of particle images, plus the effects of exposure time, and parameters such as particle image diameter, intensity, and density were investigated in terms of the velocity fields of a 1D uniform flow and the rotational 2D Hill’s vortex. The results show that PTV performs well for short exposure times, and its peak-finding criteria can be verified for nondimensional exposure times E T up to 10. As the E T increases from 10 to 70, the reliability of the PTV algorithm drops significantly, while the yield drops only slightly. Longer exposure times cause an increase in the number of RMS displacement errors; the PTV algorithm is more likely to fail when particle diameter, image intensity and particle density are larger. The displacement error of PTV RMS ranges from 0.064 pixels to 0.157 pixels. In comparison to PTV, PIV is more robust in relation to streak images with long-exposure times, and not sensitive to the effects of particle image diameter and intensity. The RMS dispersion errors for PIV range from 0.015 pixels to 0.316 pixels. A comparison of the RMS displacement errors exhibited by PIV and PTV shows that where the seeding of particles is not an issue, PIV is more robust, and can handle long-exposure streak images. The results of experimental streak images show that PIV produces lower RMS dispersion error values at low Reynolds numbers, whereas it produces more significant errors for high Reynolds numbers. At regions of low seeding density, PTV can resolve local fluid motions with superior accuracy, but it is vulnerable to high exposure time. Based on these results, where a longer exposure time is a requirement for an application, the use of PIV is recommended, by virtue of its robustness to image streaking, provided that a good seeding and high particle image density are available. For applications such as some microscale flows or flows with separation or recirculation regions, PTV is more capable of fulfilling their requirements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lllll完成签到,获得积分10
刚刚
sherry221发布了新的文献求助10
1秒前
HP完成签到,获得积分10
2秒前
激动的新筠完成签到,获得积分10
3秒前
摸鱼校尉完成签到,获得积分10
3秒前
4秒前
Jasper应助满地枫叶采纳,获得10
6秒前
6秒前
6秒前
caleb完成签到,获得积分10
7秒前
perovskite完成签到,获得积分10
7秒前
顾矜应助机智的妙晴采纳,获得10
9秒前
李明发布了新的文献求助10
10秒前
杨榆藤完成签到,获得积分10
11秒前
什米完成签到,获得积分10
12秒前
hhhbbb完成签到,获得积分10
13秒前
王灿灿应助虞无声采纳,获得10
14秒前
善学以致用应助Wang采纳,获得10
14秒前
转圈晕倒完成签到,获得积分10
15秒前
超级训熊师完成签到 ,获得积分10
15秒前
sunsaint完成签到,获得积分10
18秒前
四夕完成签到 ,获得积分10
18秒前
彪壮的美女完成签到,获得积分10
18秒前
一个有点长的序完成签到 ,获得积分10
19秒前
转圈晕倒发布了新的文献求助10
19秒前
浅是宝贝完成签到,获得积分10
19秒前
大气建辉完成签到 ,获得积分10
19秒前
冬虫夏草完成签到,获得积分10
20秒前
雨霖铃完成签到 ,获得积分10
21秒前
科研通AI2S应助李明采纳,获得10
21秒前
所所应助caleb采纳,获得10
21秒前
xiaoguang li完成签到,获得积分10
23秒前
内向南风完成签到 ,获得积分10
23秒前
23秒前
Ava应助75986686采纳,获得10
23秒前
潇洒的茗茗完成签到 ,获得积分10
24秒前
鲤鱼小熊猫完成签到,获得积分10
25秒前
temaxs完成签到 ,获得积分10
27秒前
花花世界J完成签到,获得积分10
28秒前
28秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137115
求助须知:如何正确求助?哪些是违规求助? 2788133
关于积分的说明 7784741
捐赠科研通 2444121
什么是DOI,文献DOI怎么找? 1299763
科研通“疑难数据库(出版商)”最低求助积分说明 625574
版权声明 601011