Combining targeted sequencing and ultra-low-pass whole-genome sequencing for accurate somatic copy number alteration detection

生物 DNA测序 基因组 深度测序 计算生物学 全基因组测序 基因型 拷贝数变化 遗传学 基因
作者
Junfeng Fu,Weihua Guo,Cheng Yan,Zhenyang Lv,Yu Wang,Ze Wang,Zhe Fan,Ting Lei
出处
期刊:Functional & Integrative Genomics [Springer Nature]
卷期号:21 (2): 161-169 被引量:4
标识
DOI:10.1007/s10142-021-00767-y
摘要

This study investigated the feasibility of combining targeted sequencing and ultra-low-pass whole-genome sequencing (ULP-WGS) for improved somatic copy number alteration (SCNA) detection, due to its role in tumorigenesis and prognosis. Cerebrospinal fluid and matched blood samples were obtained from 29 patients with brain metastasis derived from lung cancer. Samples were subjected to targeted sequencing (genomic coverage: 300 kb) and 2×ULP-WGS. The SCNA was detected by the CTLW_CNV, Control-FreeC, and CNVkit methods and their accuracy was analyzed. Eighteen tumor samples showed consistent SCNA results between the three methods, while a small fraction of samples resulted in different SCNA estimations. Further analysis indicated that consistency of SCNA highly correlated with the difference of baseline depth (normalized depth of regions without SCNA events) estimation between methods. Conflict Index showed that CTLW_CNV significantly improved the accuracy of SCNA detection through precise baseline depth estimation. CTLW_CNV combines targeted sequencing and ULP-WGS for improved SCNA detection. The improvement in detection accuracy is mainly due to a refined baseline depth estimation, guided by single-nucleotide polymorphism allele frequencies within the deeply sequenced region (targeted sequencing). This method is especially suitable for tumor samples with biased aneuploidy, a previously under-estimated genomic characteristic across different cancer types.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
海子完成签到,获得积分10
1秒前
沉敛一生发布了新的文献求助10
1秒前
柏忆南完成签到 ,获得积分10
1秒前
li发布了新的文献求助10
1秒前
dldddz发布了新的文献求助10
1秒前
jimmy完成签到,获得积分10
1秒前
田様应助侦察兵采纳,获得10
1秒前
鑫渊完成签到,获得积分10
1秒前
天冷了hhhdh完成签到,获得积分10
2秒前
ting完成签到,获得积分10
2秒前
微笑完成签到,获得积分10
2秒前
可爱的函函应助西宁阿采纳,获得30
3秒前
蓝莓松饼发布了新的文献求助10
3秒前
4秒前
哈哈发布了新的文献求助10
4秒前
高高发布了新的文献求助10
4秒前
一拳一个小欧阳完成签到 ,获得积分10
4秒前
明雨天地完成签到,获得积分10
4秒前
deathmask完成签到 ,获得积分10
4秒前
老实志泽完成签到,获得积分20
5秒前
5秒前
5秒前
5秒前
hata完成签到,获得积分10
5秒前
Pangsj完成签到,获得积分10
6秒前
6秒前
青蛙旅行完成签到 ,获得积分10
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
小马甲应助科研通管家采纳,获得10
6秒前
Orange应助科研通管家采纳,获得10
7秒前
小马甲应助mimi采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
英姑应助科研通管家采纳,获得10
7秒前
雪白问兰应助科研通管家采纳,获得30
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
zzzzzz应助科研通管家采纳,获得20
7秒前
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672