甲脒
钙钛矿(结构)
卤化物
材料科学
理论(学习稳定性)
概率逻辑
计算机科学
化学
机器学习
人工智能
无机化学
结晶学
作者
Shijing Sun,Armi Tiihonen,Felipe Oviedo,Zhe Liu,Janak Thapa,Yicheng Zhao,Noor Titan Putri Hartono,Anuj Goyal,Thomas Heumueller,Clio Batali,Alex Encinas,Jason J. Yoo,Ruipeng Li,Zekun Ren,Ian Marius Peters,Christoph J. Brabec,Moungi G. Bawendi,Vladan Stevanović,John W. Fisher,Tonio Buonassisi
出处
期刊:Matter
[Elsevier BV]
日期:2021-02-01
卷期号:4 (4): 1305-1322
被引量:122
标识
DOI:10.1016/j.matt.2021.01.008
摘要
Summary Search for resource-efficient materials in vast compositional spaces is an outstanding challenge in creating environmentally stable perovskite semiconductors. We demonstrate a physics-constrained sequential learning framework to subsequently identify the most stable alloyed organic-inorganic perovskites. We fuse data from high-throughput degradation tests and first-principle calculations of phase thermodynamics into an end-to-end Bayesian optimization algorithm using probabilistic constraints. By sampling just 1.8% of the discretized CsxMAyFA1−x−yPbI3 (MA, methylammonium; FA, formamidinium) compositional space, perovskites centered at Cs0.17MA0.03FA0.80PbI3 show minimal optical change under increased temperature, moisture, and illumination with >17-fold stability improvement over MAPbI3. The thin films have 3-fold improved stability compared with state-of-the-art multi-halide Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3, translating into enhanced solar cell stability without compromising conversion efficiency. Synchrotron-based X-ray scattering validates the suppression of chemical decomposition and minority phase formation achieved using fewer elements and a maximum of 8% MA. We anticipate that this data fusion approach can be extended to guide materials discovery for a wide range of multinary systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI