Revealing the Role of W-Doping in Enhancing the Electrochemical Performance of the LiNi0.6Co0.2Mn0.2O2 Cathode at 4.5 V

材料科学 兴奋剂 电化学 阴极 三元运算 晶体结构 八面体 扩散 锂(药物) 化学工程 纳米技术 分析化学(期刊) 化学物理 电极 热力学 结晶学 物理化学 光电子学 医学 物理 工程类 内分泌学 化学 色谱法 计算机科学 程序设计语言
作者
Binbin Chu,Longzhen You,Guangxin Li,Tao Huang,Aishui Yu
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:13 (6): 7308-7316 被引量:51
标识
DOI:10.1021/acsami.0c21501
摘要

More and more attention has been focused on Ni-rich ternary materials due to their superior specific capacity, but they still suffer inherent structural irreversibility and rapid capacity degradation under a high voltage. Oxidation of unstable oxygen will lead to the irreversible transformation of the structure. Taking into account the strong W–O bond, an appropriate amount of W-doping is studied to reinforce the thermal stability and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 (NCM622) at 4.5 V. Combining experiments and theoretical calculations, it can be found that W-doping is most preferred at Co sites, and the average charge around O in the NiO6 octahedron becomes more negative after W-doping, which can successfully restrain the release of oxygen, thereby improving the stability of the crystal structure during deep delithiation. In addition, W-doping decreases the energy barrier of the Li+ migration slightly and boosts the kinetic diffusion of lithium ions. As a result, NCM622 doped with 0.5% W boasts an outstanding capacity retention of 96.7% at 1 C after 100 cycles and a discharge specific capacity of up to 152.8 mA h g–1 at 5 C between 3.0 and 4.5 V. Furthermore, analysis of the cycled electrodes indicates that the lattice expansion and the formation of microcracks during long cycling are suppressed after W-doping, thereby elevating the structure and interface stability. Therefore, doping an appropriate amount of W via simple methods is helpful to obtain Ni-rich cathode materials with admirable performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
aslink发布了新的文献求助10
刚刚
111发布了新的文献求助10
刚刚
知性的成关注了科研通微信公众号
1秒前
1秒前
冽飏完成签到,获得积分20
1秒前
斯文冷亦发布了新的文献求助10
2秒前
1177完成签到,获得积分20
2秒前
yang完成签到 ,获得积分10
2秒前
2秒前
刘钱美子发布了新的文献求助10
4秒前
x1发布了新的文献求助10
5秒前
无糖的问题完成签到,获得积分20
5秒前
jjy完成签到 ,获得积分10
5秒前
bkagyin应助余佘采纳,获得30
5秒前
6秒前
毕业完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
不吃香菇完成签到,获得积分10
7秒前
星辰大海应助仲夏采纳,获得10
7秒前
Bronx发布了新的文献求助30
8秒前
8秒前
TomTonyy完成签到,获得积分10
9秒前
CodeCraft应助DZ采纳,获得10
10秒前
岁月神偷发布了新的文献求助10
10秒前
小蘑菇应助斯文冷亦采纳,获得30
10秒前
10秒前
10秒前
嘻嘻完成签到,获得积分10
10秒前
爆米花应助小赵采纳,获得10
10秒前
轻松盼雁发布了新的文献求助10
11秒前
包容昊强完成签到,获得积分10
11秒前
11秒前
四氟硼酸盐完成签到,获得积分10
12秒前
xiebaoshu发布了新的文献求助10
12秒前
12秒前
李爱国应助娇气的雁兰采纳,获得10
13秒前
机灵的沛槐完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4559942
求助须知:如何正确求助?哪些是违规求助? 3986277
关于积分的说明 12342143
捐赠科研通 3656944
什么是DOI,文献DOI怎么找? 2014643
邀请新用户注册赠送积分活动 1049418
科研通“疑难数据库(出版商)”最低求助积分说明 937738