Revealing the Role of W-Doping in Enhancing the Electrochemical Performance of the LiNi0.6Co0.2Mn0.2O2 Cathode at 4.5 V

材料科学 兴奋剂 电化学 阴极 三元运算 晶体结构 八面体 扩散 锂(药物) 化学工程 纳米技术 分析化学(期刊) 化学物理 电极 热力学 结晶学 物理化学 光电子学 物理 内分泌学 程序设计语言 工程类 计算机科学 医学 色谱法 化学
作者
Binbin Chu,Longzhen You,Guangxin Li,Tao Huang,Aishui Yu
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:13 (6): 7308-7316 被引量:61
标识
DOI:10.1021/acsami.0c21501
摘要

More and more attention has been focused on Ni-rich ternary materials due to their superior specific capacity, but they still suffer inherent structural irreversibility and rapid capacity degradation under a high voltage. Oxidation of unstable oxygen will lead to the irreversible transformation of the structure. Taking into account the strong W-O bond, an appropriate amount of W-doping is studied to reinforce the thermal stability and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 (NCM622) at 4.5 V. Combining experiments and theoretical calculations, it can be found that W-doping is most preferred at Co sites, and the average charge around O in the NiO6 octahedron becomes more negative after W-doping, which can successfully restrain the release of oxygen, thereby improving the stability of the crystal structure during deep delithiation. In addition, W-doping decreases the energy barrier of the Li+ migration slightly and boosts the kinetic diffusion of lithium ions. As a result, NCM622 doped with 0.5% W boasts an outstanding capacity retention of 96.7% at 1 C after 100 cycles and a discharge specific capacity of up to 152.8 mA h g-1 at 5 C between 3.0 and 4.5 V. Furthermore, analysis of the cycled electrodes indicates that the lattice expansion and the formation of microcracks during long cycling are suppressed after W-doping, thereby elevating the structure and interface stability. Therefore, doping an appropriate amount of W via simple methods is helpful to obtain Ni-rich cathode materials with admirable performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
2秒前
cgsu完成签到,获得积分10
2秒前
大模型应助Dracoon采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
Twonej应助Xiaoxiao采纳,获得30
3秒前
Jeffwgx发布了新的文献求助10
4秒前
HXPHXP发布了新的文献求助10
4秒前
科研通AI6.1应助浅碎时光采纳,获得10
6秒前
马小燕发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
ww发布了新的文献求助10
7秒前
8秒前
张伊洛完成签到,获得积分10
8秒前
10秒前
bkagyin应助guojia采纳,获得10
10秒前
10秒前
科研通AI6.1应助yziy采纳,获得10
10秒前
可可可可汁完成签到 ,获得积分10
10秒前
zz发布了新的文献求助10
11秒前
reck发布了新的文献求助10
11秒前
12秒前
biackgao发布了新的文献求助10
12秒前
12秒前
milu发布了新的文献求助30
13秒前
13秒前
体贴羊完成签到,获得积分20
13秒前
L353052833完成签到,获得积分10
14秒前
儒雅的冷松完成签到,获得积分10
14秒前
14秒前
14秒前
15秒前
15秒前
15秒前
15秒前
15秒前
15秒前
15秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5753261
求助须知:如何正确求助?哪些是违规求助? 5479350
关于积分的说明 15377001
捐赠科研通 4892141
什么是DOI,文献DOI怎么找? 2630924
邀请新用户注册赠送积分活动 1579097
关于科研通互助平台的介绍 1534924