A tongue features fusion approach to predicting prediabetes and diabetes with machine learning

糖尿病前期 人工智能 舌头 糖尿病 精确性和召回率 医学 计算机科学 2型糖尿病 病理 内分泌学
作者
Jun Li,Pei Yuan,Xiaojuan Hu,Jing-bin Huang,Longtao Cui,Ji Cui,Xuxiang Ma,Tao Jiang,Xinghua Yao,Jiacai Li,Yulin Shi,Zijuan Bi,Yu Wang,FU Hong-yuan,Jue Wang,Yen-Ting Lin,Ching-Hsuan Pai,Xiaojing Guo,Changle Zhou,Liping Tu,Jiatuo Xu
出处
期刊:Journal of Biomedical Informatics [Elsevier]
卷期号:115: 103693-103693 被引量:72
标识
DOI:10.1016/j.jbi.2021.103693
摘要

Diabetics has become a serious public health burden in China. Multiple complications appear with the progression of diabetics pose a serious threat to the quality of human life and health. We can prevent the progression of prediabetics to diabetics and delay the progression to diabetics by early identification of diabetics and prediabetics and timely intervention, which have positive significance for improving public health. Using machine learning techniques, we establish the noninvasive diabetics risk prediction model based on tongue features fusion and predict the risk of prediabetics and diabetics. Applying the type TFDA-1 Tongue Diagnosis Instrument, we collect tongue images, extract tongue features including color and texture features using TDAS, and extract the advanced tongue features with ResNet-50, achieve the fusion of the two features with GA_XGBT, finally establish the noninvasive diabetics risk prediction model and evaluate the performance of testing effectiveness. Cross-validation suggests the best performance of GA_XGBT model with fusion features, whose average CA is 0.821, the average AUROC is 0.924, the average AUPRC is 0.856, the average Precision is 0.834, the average Recall is 0.822, the average F1-score is 0.813. Test set suggests the best testing performance of GA_XGBT model, whose average CA is 0.81, the average AUROC is 0.918, the average AUPRC is 0.839, the average Precision is 0.821, the average Recall is 0.81, the average F1-score is 0.796. When we test prediabetics with GA_XGBT model, we find that the AUROC is 0.914, the Precision is 0.69, the Recall is 0.952, the F1-score is 0.8. When we test diabetics with GA_XGBT model, we find that the AUROC is 0.984, the Precision is 0.929, the Recall is 0.951, the F1-score is 0.94. Based on tongue features, the study uses classical machine learning algorithm and deep learning algorithm to maximum the respective advantages. We combine the prior knowledge and potential features together, establish the noninvasive diabetics risk prediction model with features fusion algorithm, and detect prediabetics and diabetics noninvasively. Our study presents a feasible method for establishing the association between diabetics and the tongue image information and prove that tongue image information is a potential marker which facilitates effective early diagnosis of prediabetics and diabetics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱静静应助任性怜阳采纳,获得10
刚刚
ershaj发布了新的文献求助10
刚刚
yelis发布了新的文献求助20
1秒前
1秒前
ff关闭了ff文献求助
2秒前
xiaowei完成签到,获得积分10
2秒前
orixero应助机智的凡采纳,获得10
3秒前
希望天下0贩的0应助啊251采纳,获得10
3秒前
bkagyin应助Kim_Hou采纳,获得10
3秒前
小羊完成签到,获得积分10
4秒前
梵高完成签到,获得积分10
5秒前
5秒前
aokou完成签到,获得积分20
5秒前
赘婿应助这玩意长头发啦采纳,获得10
5秒前
秋作完成签到,获得积分10
5秒前
漠漠完成签到 ,获得积分10
6秒前
7秒前
7秒前
111完成签到,获得积分10
7秒前
jjlove完成签到,获得积分10
7秒前
满意沅完成签到,获得积分20
8秒前
怜梦完成签到,获得积分10
9秒前
9秒前
苹果烧鹅完成签到,获得积分10
9秒前
9秒前
9秒前
忧心的白羊完成签到,获得积分10
10秒前
10秒前
10秒前
如意楼房关注了科研通微信公众号
11秒前
alexlpb发布了新的文献求助10
11秒前
11秒前
South朝484发布了新的文献求助10
11秒前
科研通AI2S应助zzx采纳,获得10
12秒前
所所应助zzx采纳,获得10
12秒前
zpj完成签到 ,获得积分10
12秒前
天天快乐应助平淡的恋风采纳,获得10
12秒前
lallallallall关注了科研通微信公众号
13秒前
浩浩发布了新的文献求助10
13秒前
然4519完成签到 ,获得积分10
13秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151350
求助须知:如何正确求助?哪些是违规求助? 2802831
关于积分的说明 7850478
捐赠科研通 2460184
什么是DOI,文献DOI怎么找? 1309602
科研通“疑难数据库(出版商)”最低求助积分说明 628992
版权声明 601760