Real-time underwater image enhancement: a systematic review

水下 计算机科学 图像质量 图像处理 软件 人工智能 噪音(视频) 计算机视觉 质量(理念) 遥感 图像(数学) 地质学 海洋学 物理 量子力学 程序设计语言
作者
Mohammad Kazem Moghimi,Farahnaz Mohanna
出处
期刊:Journal of Real-time Image Processing [Springer Nature]
卷期号:18 (5): 1509-1525 被引量:31
标识
DOI:10.1007/s11554-020-01052-0
摘要

In recent years, deep sea and ocean explorations have attracted more attention in the marine industry. Most of the marine vehicles, including robots, submarines, and ships, would be equipped with automatic imaging of deep sea layers. There is a reason which the quality of the images taken by the underwater devices is not optimal due to water properties and impurities. Consequently, water absorbs a series of colors, so processing gets more difficult. Scattering and absorption are related to underwater imaging light and are called light attenuation in water. The examination has previously shown that the emergence of some inherent limitations is due to the presence of artifacts and environmental noise in underwater images. As a result, it is hard to distinguish objects from their backgrounds in those images in a real-time system. This paper discusses the effect of the software and hardware parts for the underwater image, surveys the state-of-art different strategies and algorithms in underwater image enhancement, and measures the algorithm performance from various aspects. We also consider the important conducted studies on the field of quality enhancement in underwater images. We have analyzed the methods from five perspectives: (a) hardware and software tools, (b) a variety of underwater imaging techniques, (c) improving real-time image quality, (d) identifying specific objectives in underwater imaging, and (e) assessments. Finally, the advantages and disadvantages of the presented real/non-real-time image processing techniques are addressed to improve the quality of the underwater images. This systematic review provides an overview of the major underwater image algorithms and real/non-real-time processing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
幽默的惮发布了新的文献求助100
3秒前
4秒前
WM应助aaa采纳,获得10
6秒前
6秒前
科研通AI2S应助幼稚采纳,获得10
7秒前
7秒前
可可151i完成签到,获得积分10
8秒前
拼搏山槐完成签到 ,获得积分10
8秒前
9秒前
11秒前
淡定亦云发布了新的文献求助10
12秒前
albertxin完成签到,获得积分10
12秒前
12秒前
_u_ii发布了新的文献求助10
13秒前
Muse完成签到,获得积分10
13秒前
彭于晏应助tom采纳,获得10
15秒前
cdercder发布了新的文献求助10
17秒前
社会主义接班人完成签到 ,获得积分10
17秒前
wowowww发布了新的文献求助10
17秒前
20秒前
李爱国应助专注如冰采纳,获得10
20秒前
李健的小迷弟应助听风采纳,获得10
20秒前
自信鑫鹏完成签到,获得积分10
22秒前
23秒前
情怀应助XY采纳,获得10
23秒前
25秒前
25秒前
无敌反派大美人应助bias采纳,获得10
26秒前
albertxin发布了新的文献求助10
26秒前
天天快乐应助cdercder采纳,获得10
26秒前
..完成签到 ,获得积分10
26秒前
shardowzx完成签到,获得积分10
27秒前
wowowww完成签到,获得积分20
27秒前
打打应助烤地瓜采纳,获得10
27秒前
科研通AI2S应助Light采纳,获得10
28秒前
科研小南瓜完成签到 ,获得积分10
28秒前
29秒前
shardowzx发布了新的文献求助10
30秒前
30秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Education and Upward Social Mobility in China: Imagining Positive Sociology with Bourdieu 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3352846
求助须知:如何正确求助?哪些是违规求助? 2977765
关于积分的说明 8681579
捐赠科研通 2658797
什么是DOI,文献DOI怎么找? 1455922
科研通“疑难数据库(出版商)”最低求助积分说明 674190
邀请新用户注册赠送积分活动 664849