因果关系(物理学)
利用
观察研究
数据科学
计算机科学
因果推理
变化(天文学)
任务(项目管理)
估计
计量经济学
人工智能
机器学习
统计
数学
经济
物理
管理
量子力学
天体物理学
计算机安全
作者
Tony Liu,Lyle Ungar,Konrad P. Körding
标识
DOI:10.1038/s43588-020-00005-8
摘要
Estimating causality from observational data is essential in many data science questions but can be a challenging task. Here we review approaches to causality that are popular in econometrics and that exploit (quasi) random variation in existing data, called quasi-experiments, and show how they can be combined with machine learning to answer causal questions within typical data science settings. We also highlight how data scientists can help advance these methods to bring causal estimation to high-dimensional data from medicine, industry and society.
科研通智能强力驱动
Strongly Powered by AbleSci AI