A Deep-Learning-Based Approach for Reservoir Production Forecast under Uncertainty

代理(统计) 计算机科学 饱和(图论) 深度学习 石油工程 磁导率 机器学习 人工智能 储层模拟 数据挖掘 储层建模 地质学 数学 遗传学 生物 组合数学
作者
Zhi Zhong,Alexander Y. Sun,Bo Ren,Yanyong Wang
出处
期刊:Spe Journal [Society of Petroleum Engineers]
卷期号:26 (03): 1314-1340 被引量:51
标识
DOI:10.2118/205000-pa
摘要

Summary This paper presents a deep-learning-based proxy modeling approach to efficiently forecast reservoir pressure and fluid saturation in heterogeneous reservoirs during waterflooding. The proxy model is built on a recently developed deep-learning framework, the coupled generative adversarial network (Co-GAN), to learn the joint distribution of multidomain high-dimensional image data. In our formulation, the inputs include reservoir static properties (permeability), injection rates, and forecast time, while the outputs include the reservoir dynamic states (i.e., reservoir pressure and fluid saturation) corresponding to the forecast time. Training data obtained from full-scale numerical reservoir simulations were used to train the Co-GAN proxy model, and then testing data were used to evaluate the accuracy and generalization ability of the trained model. Results indicate that the Co-GAN proxy model can predict the reservoir pressure and fluid saturation with high accuracy, which in turn, enable accurate predictions of well production rates. Moreover, the Co-GAN proxy model also is robust in extrapolating dynamic reservoir states. The deep-learning proxy models developed in this work provide a new and fast alternative to estimating reservoir production in real time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷酷向彤完成签到,获得积分10
刚刚
1秒前
3秒前
赘婿应助知之采纳,获得10
3秒前
3秒前
4秒前
冷酷向彤发布了新的文献求助10
5秒前
充电宝应助LL采纳,获得10
6秒前
泪流不止完成签到,获得积分10
6秒前
Ava应助于帆采纳,获得10
6秒前
璐璐发布了新的文献求助30
7秒前
7秒前
安an发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
企鹅发布了新的文献求助10
12秒前
SnLXn应助忧虑的羊采纳,获得10
13秒前
无望幽月完成签到 ,获得积分10
13秒前
100发布了新的文献求助10
14秒前
我是老大应助yepeach采纳,获得10
15秒前
gu完成签到,获得积分20
15秒前
可爱的函函应助xsq采纳,获得10
17秒前
霸霸斌完成签到 ,获得积分10
17秒前
17秒前
Orange应助qqq采纳,获得10
19秒前
19秒前
20秒前
完美世界应助粗犷的书萱采纳,获得10
22秒前
ysysqfyz发布了新的文献求助10
22秒前
搜集达人应助junhua采纳,获得10
23秒前
依旧完成签到,获得积分10
23秒前
大媛媛发布了新的文献求助10
24秒前
上官若男应助安an采纳,获得10
24秒前
山丘完成签到,获得积分10
25秒前
dy完成签到,获得积分10
26秒前
willow完成签到 ,获得积分10
26秒前
27秒前
FashionBoy应助gu采纳,获得10
28秒前
28秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Keywords: explanatory textual sequences, motivation, self-determination, academic performance, math, artificial intelligence 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3267535
求助须知:如何正确求助?哪些是违规求助? 2906979
关于积分的说明 8340317
捐赠科研通 2577592
什么是DOI,文献DOI怎么找? 1401153
科研通“疑难数据库(出版商)”最低求助积分说明 655000
邀请新用户注册赠送积分活动 633967