CdSe/ZnS Core-Shell-Type Quantum Dot Nanoparticles Disrupt the Cellular Homeostasis in Cellular Blood–Brain Barrier Models

血脑屏障 细胞生物学 化学 并行传输 活性氧 生物物理学 DNA损伤 细胞毒性 紧密连接 生物 体外 生物化学 DNA 磁导率 中枢神经系统 神经科学
作者
Katarzyna Kania,W. C. Wagner,Łukasz Pułaski
出处
期刊:International Journal of Molecular Sciences [Multidisciplinary Digital Publishing Institute]
卷期号:22 (3): 1068-1068 被引量:17
标识
DOI:10.3390/ijms22031068
摘要

Two immortalized brain microvascular endothelial cell lines (hCMEC/D3 and RBE4, of human and rat origin, respectively) were applied as an in vitro model of cellular elements of the blood–brain barrier in a nanotoxicological study. We evaluated the impact of CdSe/ZnS core-shell-type quantum dot nanoparticles on cellular homeostasis, using gold nanoparticles as a largely bioorthogonal control. While the investigated nanoparticles had surprisingly negligible acute cytotoxicity in the evaluated models, a multi-faceted study of barrier-related phenotypes and cell condition revealed a complex pattern of homeostasis disruption. Interestingly, some features of the paracellular barrier phenotype (transendothelial electrical resistance, tight junction protein gene expression) were improved by exposure to nanoparticles in a potential hormetic mechanism. However, mitochondrial potential and antioxidant defences largely collapsed under these conditions, paralleled by a strong pro-apoptotic shift in a significant proportion of cells (evidenced by apoptotic protein gene expression, chromosomal DNA fragmentation, and membrane phosphatidylserine exposure). Taken together, our results suggest a reactive oxygen species-mediated cellular mechanism of blood–brain barrier damage by quantum dots, which may be toxicologically significant in the face of increasing human exposure to this type of nanoparticles, both intended (in medical applications) and more often unintended (from consumer goods-derived environmental pollution).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
全圆佑的猫猫完成签到,获得积分10
1秒前
小马甲应助sdl采纳,获得10
4秒前
爱吃的小肚腩完成签到,获得积分10
4秒前
5秒前
JAYZHANG发布了新的文献求助10
5秒前
5秒前
6秒前
7秒前
7秒前
8秒前
8秒前
汉堡包应助missinglotta采纳,获得10
9秒前
wys完成签到 ,获得积分10
10秒前
lulu发布了新的文献求助10
11秒前
11秒前
研友_VZG7GZ应助索李拉俊采纳,获得10
12秒前
十里长亭发布了新的文献求助10
12秒前
杨羊羊发布了新的文献求助10
13秒前
13秒前
13秒前
很酷鼓包完成签到,获得积分20
15秒前
15秒前
sdl发布了新的文献求助10
16秒前
tt完成签到 ,获得积分10
16秒前
提拉敏苏发布了新的文献求助10
18秒前
19秒前
20秒前
36456657发布了新的文献求助10
21秒前
22秒前
24秒前
rr发布了新的文献求助10
24秒前
25秒前
冷艳的小懒虫完成签到 ,获得积分10
25秒前
missinglotta发布了新的文献求助10
25秒前
王一完成签到 ,获得积分10
26秒前
刘翘铭完成签到,获得积分10
27秒前
27秒前
坚定的雁菱完成签到,获得积分10
28秒前
烟尘发布了新的文献求助10
29秒前
30秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3730411
求助须知:如何正确求助?哪些是违规求助? 3275096
关于积分的说明 9991124
捐赠科研通 2990723
什么是DOI,文献DOI怎么找? 1641231
邀请新用户注册赠送积分活动 779610
科研通“疑难数据库(出版商)”最低求助积分说明 748331