A star-test wavefront sensor using neural network analysis

自适应光学 波前 波前传感器 泽尼克多项式 导航星 计算机科学 人工神经网络 干涉测量 光学 变形镜 人工智能 物理
作者
Gaston Baudat,John Hayes
标识
DOI:10.1117/12.2568018
摘要

We describe a new, simple wavefront sensing method that uses a single measurement of a defocused star and a neural network to determine low-order wavefront components. The neural net is trained on computed diffracted star image data at 640 nm to output annular Zernike terms for an obscured circular aperture over a discrete range of all values. In the context of an actual star, the neural-net also provides the Fried’s parameter as an estimation of atmospheric turbulence. It is shown that the neural-net can produce a robust, high accuracy solution of the wavefront based on a single measurement. The method can also be used to simultaneously determine both on-axis and fielddependent wavefront performance from a single measurement of stars throughout the field. The prototype system can run at a rate of about 1 Hz with Python interpreted code, but higher speeds, up to video rates, are possible with compilation, proper hardware and optimization. This technique is particularly useful for low-order active-optics control and for optical alignment. A key advantage of this new method is that it only requires a single camera making it a simple cost-effective solution that can take advantage of an existing camera that may already be in an optical system. Results for this method are compared to high-precision interferometric data taken with a 4D Technology, PhaseCam interferometer and with an Innovations Foresight StarWave Shack Hartmann sensor from ALCOR SYSTEM under well-controlled conditions to validate performance. We also look at how the system has been implemented to use starlight for aligning multiple mirror telescopes in the presence of atmospheric seeing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
4秒前
栗子应助小李的李采纳,获得10
5秒前
爆米花应助坦率雁卉采纳,获得10
5秒前
胜胜糖完成签到 ,获得积分10
6秒前
6秒前
孙伟伟发布了新的文献求助10
8秒前
活泼之云发布了新的文献求助10
9秒前
香蕉觅云应助蓝胖子采纳,获得10
11秒前
鳗鱼思天完成签到,获得积分10
12秒前
13秒前
15秒前
Tycoon完成签到,获得积分10
16秒前
ccccc完成签到,获得积分10
16秒前
16秒前
皮皮完成签到 ,获得积分10
19秒前
英俊的铭应助悦耳的真采纳,获得10
20秒前
21秒前
上官若男应助刘晓倩采纳,获得10
21秒前
21秒前
22秒前
Chuyu发布了新的文献求助10
22秒前
23秒前
诸葛朝雪完成签到,获得积分10
24秒前
杨航完成签到,获得积分10
25秒前
nater4ver发布了新的文献求助10
26秒前
蓝胖子发布了新的文献求助10
26秒前
怡然发卡发布了新的文献求助10
27秒前
jhhh发布了新的文献求助10
27秒前
杨航发布了新的文献求助10
28秒前
30秒前
Chuyu完成签到,获得积分10
32秒前
可乐发布了新的文献求助10
35秒前
孙伟伟完成签到,获得积分10
35秒前
Tycoon发布了新的文献求助10
38秒前
38秒前
三十三发布了新的文献求助20
39秒前
花生壳完成签到,获得积分20
41秒前
master完成签到,获得积分10
42秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161864
求助须知:如何正确求助?哪些是违规求助? 2813088
关于积分的说明 7898593
捐赠科研通 2472111
什么是DOI,文献DOI怎么找? 1316332
科研通“疑难数据库(出版商)”最低求助积分说明 631278
版权声明 602129