A star-test wavefront sensor using neural network analysis

自适应光学 波前 波前传感器 泽尼克多项式 导航星 计算机科学 人工神经网络 干涉测量 光学 变形镜 人工智能 物理
作者
Gaston Baudat,John Hayes
标识
DOI:10.1117/12.2568018
摘要

We describe a new, simple wavefront sensing method that uses a single measurement of a defocused star and a neural network to determine low-order wavefront components. The neural net is trained on computed diffracted star image data at 640 nm to output annular Zernike terms for an obscured circular aperture over a discrete range of all values. In the context of an actual star, the neural-net also provides the Fried’s parameter as an estimation of atmospheric turbulence. It is shown that the neural-net can produce a robust, high accuracy solution of the wavefront based on a single measurement. The method can also be used to simultaneously determine both on-axis and fielddependent wavefront performance from a single measurement of stars throughout the field. The prototype system can run at a rate of about 1 Hz with Python interpreted code, but higher speeds, up to video rates, are possible with compilation, proper hardware and optimization. This technique is particularly useful for low-order active-optics control and for optical alignment. A key advantage of this new method is that it only requires a single camera making it a simple cost-effective solution that can take advantage of an existing camera that may already be in an optical system. Results for this method are compared to high-precision interferometric data taken with a 4D Technology, PhaseCam interferometer and with an Innovations Foresight StarWave Shack Hartmann sensor from ALCOR SYSTEM under well-controlled conditions to validate performance. We also look at how the system has been implemented to use starlight for aligning multiple mirror telescopes in the presence of atmospheric seeing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助人之路采纳,获得10
刚刚
one完成签到 ,获得积分10
1秒前
打打应助小孙孙采纳,获得10
1秒前
DustRain发布了新的文献求助10
2秒前
尊敬雅容发布了新的文献求助60
2秒前
222完成签到,获得积分10
2秒前
都很难完成签到,获得积分20
2秒前
orixero应助美好蜻蜓采纳,获得10
3秒前
4秒前
5秒前
pluto应助Gleast采纳,获得20
5秒前
one发布了新的文献求助10
5秒前
6秒前
6秒前
8秒前
9秒前
爆米花应助星移采纳,获得10
9秒前
我是你爹发布了新的文献求助10
11秒前
taotao发布了新的文献求助10
12秒前
zhu发布了新的文献求助10
12秒前
舒适不平发布了新的文献求助10
13秒前
wanci应助xiaoxiao采纳,获得10
14秒前
16秒前
微笑的冰之完成签到,获得积分10
16秒前
nature24应助樂酉采纳,获得10
17秒前
我是你爹完成签到,获得积分10
17秒前
隐形曼青应助科研小白采纳,获得10
18秒前
19秒前
19秒前
xxxllllll发布了新的文献求助10
19秒前
21秒前
21秒前
zwk发布了新的文献求助30
22秒前
舒适不平完成签到,获得积分10
24秒前
丘比特应助miao采纳,获得10
25秒前
xuxieyu发布了新的文献求助10
25秒前
香蕉觅云应助chen.采纳,获得10
26秒前
yuanqi发布了新的文献求助10
26秒前
sound完成签到,获得积分10
26秒前
爆米花应助LFJ采纳,获得10
26秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3668076
求助须知:如何正确求助?哪些是违规求助? 3226524
关于积分的说明 9769880
捐赠科研通 2936484
什么是DOI,文献DOI怎么找? 1608572
邀请新用户注册赠送积分活动 759677
科研通“疑难数据库(出版商)”最低求助积分说明 735474