Inception U-Net Architecture for Semantic Segmentation to Identify Nuclei in Microscopy Cell Images

计算机科学 人工智能 分割 模式识别(心理学) 像素 深度学习 联营
作者
Narinder Singh Punn,Sonali Agarwal
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:16 (1): 1-15 被引量:79
标识
DOI:10.1145/3376922
摘要

With the increasing applications of deep learning in biomedical image analysis, in this article we introduce an inception U-Net architecture for automating nuclei detection in microscopy cell images of varying size and modality to help unlock faster cures, inspired from Kaggle Data Science Bowl Challenge 2018 (KDSB18). This study follows from the fact that most of the analysis requires nuclei detection as the starting phase for getting an insight into the underlying biological process and further diagnosis. The proposed architecture consists of a switch normalization layer, convolution layers, and inception layers (concatenated 1x1, 3x3, and 5x5 convolution and the hybrid of a max and Hartley spectral pooling layer) connected in the U-Net fashion for generating the image masks. This article also illustrates the model perception of image masks using activation maximization and filter map visualization techniques. A novel objective function segmentation loss is proposed based on the binary cross entropy, dice coefficient, and intersection over union loss functions. The intersection over union score, loss value, and pixel accuracy metrics evaluate the model over the KDSB18 dataset. The proposed inception U-Net architecture exhibits quite significant results as compared to the original U-Net and recent U-Net++ architecture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Liyuan完成签到,获得积分10
1秒前
1秒前
笑点低的碧琴完成签到,获得积分10
2秒前
独特的青曼完成签到,获得积分10
3秒前
FashionBoy应助熊蕾采纳,获得10
3秒前
Akim应助笑得开心采纳,获得10
4秒前
时尚战斗机完成签到,获得积分10
4秒前
4秒前
5秒前
Ray完成签到,获得积分10
5秒前
文文发布了新的文献求助10
5秒前
隐形曼青应助阿巴阿巴阿采纳,获得10
5秒前
5秒前
6秒前
cc发布了新的文献求助10
6秒前
6秒前
fengdengjin发布了新的文献求助10
7秒前
靓丽的沁完成签到,获得积分10
7秒前
8秒前
9秒前
研友_VZG7GZ应助粒粒采纳,获得10
9秒前
9秒前
星辰大海应助ZXRGXY采纳,获得10
9秒前
9秒前
ardejiang发布了新的文献求助10
10秒前
土豆发布了新的文献求助10
10秒前
11秒前
lms发布了新的文献求助10
11秒前
13秒前
勇哥发布了新的文献求助10
13秒前
Liyuan发布了新的文献求助30
13秒前
噜啦啦完成签到,获得积分10
13秒前
生动夜天关注了科研通微信公众号
13秒前
13秒前
susu完成签到 ,获得积分10
14秒前
15秒前
Suraim完成签到,获得积分10
15秒前
酷波er应助lms采纳,获得10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
Founding Fathers The Shaping of America 500
Handbook of Organizational Communication: An Interdisciplinary Perspective 400
Research Handbook on Law and Political Economy Second Edition 398
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4558607
求助须知:如何正确求助?哪些是违规求助? 3985544
关于积分的说明 12339263
捐赠科研通 3656005
什么是DOI,文献DOI怎么找? 2014096
邀请新用户注册赠送积分活动 1048954
科研通“疑难数据库(出版商)”最低求助积分说明 937316