Sparse reconstruction of guided wavefield from limited measurements using compressed sensing

欠采样 压缩传感 算法 计算机科学 稀疏逼近 稀疏矩阵 迭代重建 数学 高斯分布 人工智能 物理 量子力学
作者
Baijie Qiao,Zhu Mao,Hao Sun,Songmao Chen,Xuefeng Chen
出处
期刊:Smart Structures and Systems [Technopress]
卷期号:25 (3): 369-384
标识
DOI:10.12989/sss.2020.25.3.369
摘要

A wavefield sparse reconstruction technique based on compressed sensing is developed in this work to dramatically reduce the number of measurements. Firstly, a severely underdetermined representation of guided wavefield at a snapshot is established in the spatial domain. Secondly, an optimal compressed sensing model of guided wavefield sparse reconstruction is established based on l1-norm penalty, where a suite of discrete cosine functions is selected as the dictionary to promote the sparsity. The regular, random and jittered undersampling schemes are compared and selected as the undersampling matrix of compressed sensing. Thirdly, a gradient projection method is employed to solve the compressed sensing model of wavefield sparse reconstruction from highly incomplete measurements. Finally, experiments with different excitation frequencies are conducted on an aluminum plate to verify the effectiveness of the proposed sparse reconstruction method, where a scanning laser Doppler vibrometer as the true benchmark is used to measure the original wavefield in a given inspection region. Experiments demonstrate that the missing wavefield data can be accurately reconstructed from less than 12% of the original measurements; The reconstruction accuracy of the jittered undersampling scheme is slightly higher than that of the random undersampling scheme in high probability, but the regular undersampling scheme fails to reconstruct the wavefield image; A quantified mapping relationship between the sparsity ratio and the recovery error over a special interval is established with respect to statistical modeling and analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzy发布了新的文献求助10
刚刚
Vera发布了新的文献求助10
1秒前
建新发布了新的文献求助10
1秒前
zaadasd完成签到,获得积分10
3秒前
3秒前
3秒前
欢喜若雁应助文件撤销了驳回
4秒前
你好呀完成签到,获得积分10
4秒前
5秒前
科研通AI2S应助一团采纳,获得10
5秒前
万能图书馆应助一团采纳,获得10
5秒前
科研通AI2S应助傅扬采纳,获得10
6秒前
超帅的萤完成签到,获得积分10
6秒前
大力荷花发布了新的文献求助10
6秒前
6秒前
黄的宝发布了新的文献求助10
6秒前
llll发布了新的文献求助10
7秒前
8秒前
上官若男应助你好呀采纳,获得10
9秒前
lcpppppp发布了新的文献求助10
9秒前
BREEZE发布了新的文献求助10
9秒前
10秒前
大个应助机灵水卉采纳,获得10
10秒前
JamesPei应助大力荷花采纳,获得10
11秒前
在这种发布了新的文献求助10
11秒前
13秒前
Liu应助李廷淋采纳,获得30
16秒前
古月发布了新的文献求助100
17秒前
左右发布了新的文献求助10
17秒前
18秒前
yi发布了新的文献求助10
18秒前
黄瓜橙橙完成签到,获得积分0
18秒前
Labubu完成签到,获得积分10
19秒前
19秒前
搜集达人应助网球采纳,获得10
21秒前
SYLH应助拼搏惜金采纳,获得10
21秒前
22秒前
23秒前
量子星尘发布了新的文献求助10
24秒前
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956069
求助须知:如何正确求助?哪些是违规求助? 3502276
关于积分的说明 11107074
捐赠科研通 3232847
什么是DOI,文献DOI怎么找? 1787081
邀请新用户注册赠送积分活动 870396
科研通“疑难数据库(出版商)”最低求助积分说明 802019