清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Bolt-looseness detection by a new percussion-based method using multifractal analysis and gradient boosting decision tree

打击乐器 决策树 计算机科学 特征选择 结构健康监测 分类器(UML) 人工智能 模式识别(心理学) 地脚螺栓 Boosting(机器学习) 特征(语言学) 工程类 机器学习 数据挖掘 结构工程 声学 物理 哲学 语言学
作者
Furui Wang,Gangbing Song
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:19 (6): 2023-2032 被引量:45
标识
DOI:10.1177/1475921720912780
摘要

Among various building blocks, bolted connections are the most widely used components, which can be employed to hold the integrity of entire structures. Looseness detection of bolted connections has been an attractive topic in multiple fields including aerospace and mechanical engineering, since loose-induced bolt failures may lead to costly disasters. Recently, several structural health monitoring methods have been applied to detect bolt looseness; however, they are often impeded in practical use due to the requirement for constant sensor–structure interaction. Thus, the potential of the percussion-based method in detecting bolt looseness has been noticed. In this article, considering the drawbacks existing in prior investigations (e.g. manual feature selection), a new percussion-based method was proposed to inspect bolt looseness. Based on the multifractal analysis and the joint mutual information maximization method, the feature sets of percussion-induced sound signals were selected automatically, which effectively avoided highly experienced personnel for manual feature selection. Subsequently, after feeding extracted feature sets into a gradient boosting decision tree model, we trained a classifier to achieve the identification of bolt looseness. Compared to current percussion-based methods for bolt-loosening detection, the method we proposed in this article has higher accuracy, which is proven by experimental results. Finally, as a rapid and non-invasive structural health monitoring approach, our method can be applied to detect damages in other structures and thus guides future investigations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小药童应助科研通管家采纳,获得10
11秒前
望向天空的鱼完成签到 ,获得积分10
12秒前
平常的三问完成签到 ,获得积分10
21秒前
27秒前
Alex-Song完成签到 ,获得积分0
1分钟前
1分钟前
徐凤年完成签到,获得积分10
1分钟前
tingalan完成签到,获得积分0
1分钟前
鱼儿游完成签到 ,获得积分10
1分钟前
1分钟前
chengmin完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
愤怒的念蕾完成签到,获得积分10
1分钟前
斯文败类应助小豹子采纳,获得10
1分钟前
KYTQQ完成签到 ,获得积分10
2分钟前
zhangsan完成签到,获得积分10
2分钟前
赘婿应助科研通管家采纳,获得10
2分钟前
香蕉觅云应助科研通管家采纳,获得10
2分钟前
谭文完成签到 ,获得积分10
2分钟前
yanj520925完成签到,获得积分20
2分钟前
yanj520925发布了新的文献求助10
2分钟前
2分钟前
xiaoyi完成签到 ,获得积分10
3分钟前
清脆的靖仇完成签到,获得积分10
3分钟前
qaz111222完成签到 ,获得积分10
3分钟前
AliEmbark发布了新的文献求助30
3分钟前
shuwen完成签到 ,获得积分10
3分钟前
mojito完成签到 ,获得积分0
3分钟前
hugeyoung完成签到,获得积分10
3分钟前
arsenal完成签到 ,获得积分10
3分钟前
领导范儿应助科研通管家采纳,获得50
4分钟前
BowieHuang应助科研通管家采纳,获得10
4分钟前
4分钟前
六一儿童节完成签到 ,获得积分0
4分钟前
x夏天完成签到 ,获得积分10
4分钟前
guoguo1119完成签到 ,获得积分10
4分钟前
WebCasa完成签到,获得积分10
4分钟前
111完成签到 ,获得积分10
4分钟前
媛媛完成签到,获得积分10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5555062
求助须知:如何正确求助?哪些是违规求助? 4639610
关于积分的说明 14656439
捐赠科研通 4581593
什么是DOI,文献DOI怎么找? 2512865
邀请新用户注册赠送积分活动 1487557
关于科研通互助平台的介绍 1458561