亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Bolt-looseness detection by a new percussion-based method using multifractal analysis and gradient boosting decision tree

打击乐器 决策树 计算机科学 特征选择 结构健康监测 分类器(UML) 人工智能 模式识别(心理学) 地脚螺栓 Boosting(机器学习) 特征(语言学) 工程类 机器学习 数据挖掘 结构工程 声学 物理 哲学 语言学
作者
Furui Wang,Gangbing Song
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:19 (6): 2023-2032 被引量:45
标识
DOI:10.1177/1475921720912780
摘要

Among various building blocks, bolted connections are the most widely used components, which can be employed to hold the integrity of entire structures. Looseness detection of bolted connections has been an attractive topic in multiple fields including aerospace and mechanical engineering, since loose-induced bolt failures may lead to costly disasters. Recently, several structural health monitoring methods have been applied to detect bolt looseness; however, they are often impeded in practical use due to the requirement for constant sensor–structure interaction. Thus, the potential of the percussion-based method in detecting bolt looseness has been noticed. In this article, considering the drawbacks existing in prior investigations (e.g. manual feature selection), a new percussion-based method was proposed to inspect bolt looseness. Based on the multifractal analysis and the joint mutual information maximization method, the feature sets of percussion-induced sound signals were selected automatically, which effectively avoided highly experienced personnel for manual feature selection. Subsequently, after feeding extracted feature sets into a gradient boosting decision tree model, we trained a classifier to achieve the identification of bolt looseness. Compared to current percussion-based methods for bolt-loosening detection, the method we proposed in this article has higher accuracy, which is proven by experimental results. Finally, as a rapid and non-invasive structural health monitoring approach, our method can be applied to detect damages in other structures and thus guides future investigations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伶俐的无血完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
8秒前
Pisces完成签到 ,获得积分10
37秒前
40秒前
HeWang发布了新的文献求助10
47秒前
51秒前
自然妙竹发布了新的文献求助10
56秒前
Jasper应助HeWang采纳,获得10
57秒前
nbtzy完成签到,获得积分10
1分钟前
无端发布了新的文献求助10
1分钟前
1分钟前
诚心的导师完成签到,获得积分20
1分钟前
Owen应助无端采纳,获得10
1分钟前
1分钟前
甜蜜海蓝完成签到,获得积分10
1分钟前
情怀应助甜蜜海蓝采纳,获得10
1分钟前
7788999完成签到,获得积分10
1分钟前
充电宝应助科研通管家采纳,获得10
1分钟前
酷波er应助鱼鱼鱼采纳,获得10
1分钟前
淡然觅荷完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
TingtingGZ发布了新的文献求助10
2分钟前
ljh024完成签到,获得积分10
2分钟前
鱼鱼鱼发布了新的文献求助10
2分钟前
TingtingGZ完成签到,获得积分10
2分钟前
2分钟前
HeWang完成签到,获得积分10
2分钟前
2分钟前
HeWang发布了新的文献求助10
2分钟前
Wingshuohuo完成签到 ,获得积分10
3分钟前
3分钟前
甜蜜海蓝发布了新的文献求助10
3分钟前
Jasper应助鱼鱼鱼采纳,获得10
3分钟前
3分钟前
鱼鱼鱼发布了新的文献求助10
3分钟前
呆萌冰彤完成签到 ,获得积分10
4分钟前
wzgkeyantong完成签到,获得积分10
4分钟前
4分钟前
明亮听枫发布了新的文献求助10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4926361
求助须知:如何正确求助?哪些是违规求助? 4196197
关于积分的说明 13032134
捐赠科研通 3968240
什么是DOI,文献DOI怎么找? 2174877
邀请新用户注册赠送积分活动 1192051
关于科研通互助平台的介绍 1102242