亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Bolt-looseness detection by a new percussion-based method using multifractal analysis and gradient boosting decision tree

打击乐器 决策树 计算机科学 特征选择 结构健康监测 分类器(UML) 人工智能 模式识别(心理学) 地脚螺栓 Boosting(机器学习) 特征(语言学) 工程类 机器学习 数据挖掘 结构工程 声学 物理 哲学 语言学
作者
Furui Wang,Gangbing Song
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:19 (6): 2023-2032 被引量:45
标识
DOI:10.1177/1475921720912780
摘要

Among various building blocks, bolted connections are the most widely used components, which can be employed to hold the integrity of entire structures. Looseness detection of bolted connections has been an attractive topic in multiple fields including aerospace and mechanical engineering, since loose-induced bolt failures may lead to costly disasters. Recently, several structural health monitoring methods have been applied to detect bolt looseness; however, they are often impeded in practical use due to the requirement for constant sensor–structure interaction. Thus, the potential of the percussion-based method in detecting bolt looseness has been noticed. In this article, considering the drawbacks existing in prior investigations (e.g. manual feature selection), a new percussion-based method was proposed to inspect bolt looseness. Based on the multifractal analysis and the joint mutual information maximization method, the feature sets of percussion-induced sound signals were selected automatically, which effectively avoided highly experienced personnel for manual feature selection. Subsequently, after feeding extracted feature sets into a gradient boosting decision tree model, we trained a classifier to achieve the identification of bolt looseness. Compared to current percussion-based methods for bolt-loosening detection, the method we proposed in this article has higher accuracy, which is proven by experimental results. Finally, as a rapid and non-invasive structural health monitoring approach, our method can be applied to detect damages in other structures and thus guides future investigations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哟嚛完成签到,获得积分10
13秒前
Hiraeth完成签到 ,获得积分10
27秒前
27秒前
lizibelle发布了新的文献求助10
32秒前
NexusExplorer应助行素采纳,获得10
34秒前
36秒前
小吴发布了新的文献求助10
39秒前
40秒前
行素发布了新的文献求助10
45秒前
小吴完成签到,获得积分10
49秒前
wing完成签到 ,获得积分10
53秒前
58秒前
Jasper应助科研通管家采纳,获得10
59秒前
小灵通完成签到 ,获得积分10
1分钟前
lzl008完成签到 ,获得积分10
1分钟前
1分钟前
辛夷完成签到,获得积分10
1分钟前
lzl007完成签到 ,获得积分10
1分钟前
米粒完成签到,获得积分10
1分钟前
jueshadi发布了新的文献求助10
1分钟前
伍奄发布了新的文献求助10
1分钟前
1分钟前
ceeray23发布了新的文献求助20
1分钟前
sunhhhh完成签到 ,获得积分10
1分钟前
伍奄完成签到,获得积分10
1分钟前
朴实飞松完成签到 ,获得积分10
1分钟前
1分钟前
yx_cheng应助执着乐双采纳,获得30
1分钟前
艺涵完成签到,获得积分10
1分钟前
1分钟前
小胡萝白发布了新的文献求助10
1分钟前
CipherSage应助虚心沂采纳,获得10
1分钟前
彭于晏应助小胡萝白采纳,获得10
2分钟前
Charles完成签到,获得积分10
2分钟前
anonym11完成签到,获得积分10
2分钟前
CodeCraft应助kingyz采纳,获得20
2分钟前
ice完成签到 ,获得积分10
2分钟前
大个应助mmyhn采纳,获得10
2分钟前
希望天下0贩的0应助akakns采纳,获得10
2分钟前
2分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994955
求助须知:如何正确求助?哪些是违规求助? 3535071
关于积分的说明 11267066
捐赠科研通 3274842
什么是DOI,文献DOI怎么找? 1806483
邀请新用户注册赠送积分活动 883335
科研通“疑难数据库(出版商)”最低求助积分说明 809762