Bolt-looseness detection by a new percussion-based method using multifractal analysis and gradient boosting decision tree

打击乐器 决策树 计算机科学 特征选择 结构健康监测 分类器(UML) 人工智能 模式识别(心理学) 地脚螺栓 Boosting(机器学习) 特征(语言学) 工程类 机器学习 数据挖掘 结构工程 声学 物理 哲学 语言学
作者
Furui Wang,Gangbing Song
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:19 (6): 2023-2032 被引量:45
标识
DOI:10.1177/1475921720912780
摘要

Among various building blocks, bolted connections are the most widely used components, which can be employed to hold the integrity of entire structures. Looseness detection of bolted connections has been an attractive topic in multiple fields including aerospace and mechanical engineering, since loose-induced bolt failures may lead to costly disasters. Recently, several structural health monitoring methods have been applied to detect bolt looseness; however, they are often impeded in practical use due to the requirement for constant sensor–structure interaction. Thus, the potential of the percussion-based method in detecting bolt looseness has been noticed. In this article, considering the drawbacks existing in prior investigations (e.g. manual feature selection), a new percussion-based method was proposed to inspect bolt looseness. Based on the multifractal analysis and the joint mutual information maximization method, the feature sets of percussion-induced sound signals were selected automatically, which effectively avoided highly experienced personnel for manual feature selection. Subsequently, after feeding extracted feature sets into a gradient boosting decision tree model, we trained a classifier to achieve the identification of bolt looseness. Compared to current percussion-based methods for bolt-loosening detection, the method we proposed in this article has higher accuracy, which is proven by experimental results. Finally, as a rapid and non-invasive structural health monitoring approach, our method can be applied to detect damages in other structures and thus guides future investigations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
斯文败类应助Leo采纳,获得10
3秒前
生产队的建设者完成签到 ,获得积分10
4秒前
4秒前
搞怪的怀蕊完成签到,获得积分10
4秒前
7秒前
yishufanhua发布了新的文献求助10
8秒前
Jasper应助maclogos采纳,获得10
12秒前
breaking完成签到,获得积分10
13秒前
张一楠完成签到,获得积分10
13秒前
Hou完成签到 ,获得积分10
15秒前
科研通AI2S应助蔡从安采纳,获得10
15秒前
科研通AI2S应助蔡从安采纳,获得10
15秒前
蓝莓皇后关注了科研通微信公众号
18秒前
靓丽安珊发布了新的文献求助10
18秒前
半山完成签到,获得积分10
19秒前
19秒前
明亮的冰香完成签到 ,获得积分10
23秒前
青衍完成签到,获得积分10
24秒前
哈哈发布了新的文献求助10
24秒前
满眼喜欢遍布星河完成签到,获得积分10
26秒前
ssffzb2008完成签到,获得积分10
26秒前
优秀剑愁完成签到 ,获得积分10
26秒前
秋秋完成签到,获得积分10
28秒前
岁月如酒应助半山采纳,获得10
28秒前
29秒前
舒洛完成签到,获得积分10
29秒前
Singularity应助科研通管家采纳,获得10
31秒前
慕青应助科研通管家采纳,获得10
31秒前
31秒前
情怀应助科研通管家采纳,获得10
31秒前
Clover04应助科研通管家采纳,获得10
31秒前
好好学习完成签到 ,获得积分10
31秒前
科研通AI2S应助科研通管家采纳,获得10
31秒前
梓泽丘墟应助科研通管家采纳,获得10
31秒前
qiuqiu完成签到 ,获得积分10
31秒前
JamesPei应助科研通管家采纳,获得10
31秒前
31秒前
耍酷寻双完成签到 ,获得积分10
32秒前
Leo发布了新的文献求助10
32秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162519
求助须知:如何正确求助?哪些是违规求助? 2813377
关于积分的说明 7900197
捐赠科研通 2472938
什么是DOI,文献DOI怎么找? 1316595
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602175