Deep learning radiomic nomogram can predict the number of lymph node metastasis in locally advanced gastric cancer: an international multicenter study

列线图 医学 队列 癌症 放射科 原发性肿瘤 内科学 肿瘤科 置信区间 核医学 淋巴结 转移
作者
Di Dong,M. Fang,Lingyun Tang,Xiuhong Shan,Jianbo Gao,Francesco Giganti,R.-P. Wang,X. Chen,X.-X. Wang,Diego Palumbo,Jia Fu,W.-C. Li,J. Li,Lianzhen Zhong,Francesco De Cobelli,Jiafu Ji,Zaiyi Liu,Jie Tian
出处
期刊:Annals of Oncology [Elsevier]
卷期号:31 (7): 912-920 被引量:312
标识
DOI:10.1016/j.annonc.2020.04.003
摘要

•Evaluation of the lymph node metastasis (LNM) is the basis of individual treatment of locally advanced gastric cancer (LAGC).•Deep leaning radiomic nomogram (DLRN) based on CT images can preoperatively determine the number of LNM in LAGC.•DLRN is significantly superior to the routinely used clinical N stages, tumor size, and clinical model.•DLRN is significantly associated with the overall survival of LAGC. BackgroundPreoperative evaluation of the number of lymph node metastasis (LNM) is the basis of individual treatment of locally advanced gastric cancer (LAGC). However, the routinely used preoperative determination method is not accurate enough.Patients and methodsWe enrolled 730 LAGC patients from five centers in China and one center in Italy, and divided them into one primary cohort, three external validation cohorts, and one international validation cohort. A deep learning radiomic nomogram (DLRN) was built based on the images from multiphase computed tomography (CT) for preoperatively determining the number of LNM in LAGC. We comprehensively tested the DLRN and compared it with three state-of-the-art methods. Moreover, we investigated the value of the DLRN in survival analysis.ResultsThe DLRN showed good discrimination of the number of LNM on all cohorts [overall C-indexes (95% confidence interval): 0.821 (0.785–0.858) in the primary cohort, 0.797 (0.771–0.823) in the external validation cohorts, and 0.822 (0.756–0.887) in the international validation cohort]. The nomogram performed significantly better than the routinely used clinical N stages, tumor size, and clinical model (P < 0.05). Besides, DLRN was significantly associated with the overall survival of LAGC patients (n = 271).ConclusionA deep learning-based radiomic nomogram had good predictive value for LNM in LAGC. In staging-oriented treatment of gastric cancer, this preoperative nomogram could provide baseline information for individual treatment of LAGC. Preoperative evaluation of the number of lymph node metastasis (LNM) is the basis of individual treatment of locally advanced gastric cancer (LAGC). However, the routinely used preoperative determination method is not accurate enough. We enrolled 730 LAGC patients from five centers in China and one center in Italy, and divided them into one primary cohort, three external validation cohorts, and one international validation cohort. A deep learning radiomic nomogram (DLRN) was built based on the images from multiphase computed tomography (CT) for preoperatively determining the number of LNM in LAGC. We comprehensively tested the DLRN and compared it with three state-of-the-art methods. Moreover, we investigated the value of the DLRN in survival analysis. The DLRN showed good discrimination of the number of LNM on all cohorts [overall C-indexes (95% confidence interval): 0.821 (0.785–0.858) in the primary cohort, 0.797 (0.771–0.823) in the external validation cohorts, and 0.822 (0.756–0.887) in the international validation cohort]. The nomogram performed significantly better than the routinely used clinical N stages, tumor size, and clinical model (P < 0.05). Besides, DLRN was significantly associated with the overall survival of LAGC patients (n = 271). A deep learning-based radiomic nomogram had good predictive value for LNM in LAGC. In staging-oriented treatment of gastric cancer, this preoperative nomogram could provide baseline information for individual treatment of LAGC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自然完成签到,获得积分10
刚刚
段明威完成签到,获得积分10
刚刚
baihao821720完成签到 ,获得积分10
刚刚
标致丸子发布了新的文献求助10
1秒前
上官若男应助milii采纳,获得10
1秒前
joy完成签到,获得积分10
1秒前
小周小周完成签到,获得积分10
2秒前
拿捏陕科大完成签到,获得积分10
3秒前
硬汉多莉完成签到,获得积分20
3秒前
明理的凌旋完成签到,获得积分20
3秒前
英俊的汉堡完成签到,获得积分10
3秒前
英俊的铭应助非常可爱采纳,获得10
3秒前
qsy发布了新的文献求助10
4秒前
4秒前
科研通AI5应助风趣的惜灵采纳,获得10
4秒前
蘑菇xixi完成签到,获得积分10
5秒前
不会游泳的鱼完成签到,获得积分10
5秒前
HEIKU举报WWWUBING求助涉嫌违规
5秒前
久久完成签到,获得积分10
5秒前
5秒前
记录者完成签到,获得积分10
5秒前
CodeCraft应助miaoww采纳,获得10
5秒前
6秒前
6秒前
atom_starx完成签到 ,获得积分10
6秒前
LXZ发布了新的文献求助10
6秒前
脑洞疼应助hu970采纳,获得30
8秒前
领导范儿应助山海之间采纳,获得10
8秒前
8秒前
SUN完成签到,获得积分0
8秒前
qqwxp发布了新的文献求助10
9秒前
9秒前
花花世界完成签到 ,获得积分10
9秒前
我是老大应助Wei采纳,获得10
10秒前
复杂汉堡发布了新的文献求助10
10秒前
吴欣欣完成签到,获得积分10
10秒前
噢噢完成签到,获得积分20
10秒前
兴奋大船完成签到,获得积分10
11秒前
情怀应助NZH采纳,获得10
11秒前
zb完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527220
求助须知:如何正确求助?哪些是违规求助? 3107352
关于积分的说明 9285114
捐赠科研通 2805210
什么是DOI,文献DOI怎么找? 1539789
邀请新用户注册赠送积分活动 716697
科研通“疑难数据库(出版商)”最低求助积分说明 709672