Learning Markets: An AI Collaboration Framework Based on Blockchain and Smart Contracts

计算机科学 可扩展性 可追溯性 块链 透明度(行为) 智能合约 数据库事务 权力下放 分布式计算 人工智能 计算机安全 软件工程 数据库 政治学 法学
作者
Liwei Ouyang,Yong Yuan,Fei‐Yue Wang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (16): 14273-14286 被引量:41
标识
DOI:10.1109/jiot.2020.3032706
摘要

Artificial intelligence (AI) has been witnessed to provide valuable solutions to all walks of life. However, data island and computing resources limitations in the centralized AI architectures have increased their technical barriers, and thus distributed AI collaboration in data, models, and resources has attracted intensive research interests. Since the existing trust-based collaboration models are no longer applicable for the large-scale distributed collaboration among trustless machines in open and dynamic environments, this article proposes a novel decentralized AI collaboration framework, i.e., learning markets (LM), in which blockchain provides a trustless environment for collaboration and transaction, while smart contracts serve as software-defined agents to encapsulate and process scalable collaboration relationships and market mechanisms. LM can not only help those participants without mutual trust realize collaborative mining with dynamic and quantitative rewards but also build an AI market with natural auditability and traceability for trading trusted and verified models. We implement and comprehensively analyze LM based on the Ethereum interplenary file system platform (IPFS), and the results prove that it has advantages in collaboration fairness, transparency, security, decentralization and universality. Based on our collaboration framework, distributed AI contributors are expected to cooperate and complete those learning tasks that cannot be done previously due to lack of complete data, sufficient computing resources and state-of-the-art models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
QI发布了新的文献求助10
1秒前
HY兑完成签到,获得积分10
2秒前
4秒前
zhihaijun完成签到,获得积分10
5秒前
StellaZhang发布了新的文献求助10
7秒前
Sean完成签到,获得积分20
8秒前
8秒前
今后应助卡卡西采纳,获得10
10秒前
坚强铸海完成签到,获得积分10
12秒前
13秒前
曼曼发布了新的文献求助10
13秒前
14秒前
15秒前
qiuer0011完成签到,获得积分10
16秒前
芋圆不圆完成签到,获得积分10
17秒前
20秒前
lanthanum完成签到,获得积分10
20秒前
liu发布了新的文献求助10
21秒前
22秒前
water完成签到,获得积分10
22秒前
斯文败类应助加贺采纳,获得10
23秒前
26秒前
美好念梦完成签到 ,获得积分10
28秒前
Zhang完成签到,获得积分10
29秒前
离异硕士完成签到,获得积分20
29秒前
32秒前
刘大海完成签到,获得积分10
32秒前
万能图书馆应助卡司采纳,获得10
33秒前
星辰大海应助离异硕士采纳,获得10
33秒前
光亮的姝关注了科研通微信公众号
33秒前
深情安青应助赚大钱采纳,获得30
34秒前
哈哈哈完成签到,获得积分20
36秒前
LGH发布了新的文献求助200
37秒前
38秒前
liu完成签到,获得积分20
38秒前
微笑的巧蕊完成签到 ,获得积分10
40秒前
42秒前
温谷丝完成签到,获得积分10
43秒前
liyutong完成签到 ,获得积分10
43秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299860
求助须知:如何正确求助?哪些是违规求助? 2934706
关于积分的说明 8470318
捐赠科研通 2608238
什么是DOI,文献DOI怎么找? 1424137
科研通“疑难数据库(出版商)”最低求助积分说明 661847
邀请新用户注册赠送积分活动 645578