自愈水凝胶
材料科学
聚电解质
肿胀 的
韧性
粘弹性
化学工程
弹性模量
复合材料
高分子化学
聚合物
工程类
作者
Haiyan Yin,Daniel R. King,Tao Lin Sun,Yoshiyuki Saruwatari,Tasuku Nakajima,Takayuki Kurokawa,Jian Ping Gong
标识
DOI:10.1021/acsami.0c15269
摘要
The high water content of hydrogels makes them important as synthetic biomaterials, and tuning the mechanical properties of hydrogels to match those of natural tissues without changing chemistry is usually difficult. In this study, we have developed a series of hydrogels with varied stiffness, strength, and toughness based on a combination of poly(2-acrylamido-2-methylpropane sulfonic acid) (PAMPS), a strong acidic polyelectrolyte, and poly-N-(carboxymethyl)-N,N-dimethyl-2-(methacryloyloxy) ethanaminium) (PCDME), a polyzwitterion with a weak acidic moiety. We demonstrate that modifying the true molar ratio, R, of PCDME to PAMPS results in four unique categories of hydrogels with different swelling ratios and Young’s moduli. When R < 1, a negatively charged polyelectrolyte gel (PE) is formed; when 1 < R < 3, a tough and viscoelastic polyelectrolyte complex gel (PEC) is formed; when 3 < R < 6.5, a conventional, elastic interpenetrating network gel (IPN) is formed; and when R > 6.5, a tough and stiff double-network gel (DN) is formed. Both the PEC and DN gels exhibit high toughness and fracture stress, up to 1.8 and 1.5 MPa, respectively. Importantly, the PEC gels exhibit strong recovery properties along with high toughness, distinguishing them from DN gels. Without requiring a change in chemistry, we can tune the mechanical response of hydrogels over a wide spectrum, making this a useful system of soft and hydrated biomaterials.
科研通智能强力驱动
Strongly Powered by AbleSci AI