石墨烯
材料科学
量子点
纳米技术
光电子学
突触
神经科学
生物
作者
Mumtaz Ali,A.S. Sokolov,Min Jae Ko,Changhwan Choi
标识
DOI:10.1016/j.jallcom.2020.157514
摘要
Carbon-based organic material such as nitrogen-doped graphene oxide quantum dots (N-GOQDs) is a new-class material with unique biocompatible, high chemical inertness, and elevated photoluminescence properties. Two-terminal diffusive memristors can faithfully replicate biological synapse function via mutual similarities of in-/out-diffusion of Ag+ ions with biological Ca2+ migration dynamics for neural network applications. Inspired by hetero-plasticity phenomenon, in which Ca2+ dynamics can also be tuned by the 3rd counterpart – neuromodulatory axon, in this study, using an ultra-violet light source, we develop N-GOQDs based diffusive memristor that performs light-modulated synaptic behaviors. Specifically, photo-sensitive N-GOQDs ionic conductor shows n-π∗ electron transitions under UV excitation; yet, nitrogen-doping further facilitates the electron transitions, giving out additional conductance induced by light. Further, we demonstrate endurable threshold resistive switching (TS) behavior based on Ag+ ions migration and its variety of facilitations via assisted UV illumination. The enhancement of post-synaptic current under assisted UV light, as well as the light stimulated transition from short-to long-term memory potentiation have been achieved. These findings are believed to be a step forward for the realization of higher bandwidth synapse modulation as future hardware-based neural network applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI