贝叶斯概率
临时的
中期分析
计算机科学
适应性设计
机器学习
计算
临床试验
预测能力
临床研究设计
人工智能
数据挖掘
算法
医学
历史
认识论
哲学
病理
考古
作者
Ofir Harari,Grace Hsu,Louis Dron,Jay Park,Kristian Thorlund,Edward J. Mills
摘要
SUMMARY The Bayesian paradigm provides an ideal platform to update uncertainties and carry them over into the future in the presence of data. Bayesian predictive power (BPP) reflects our belief in the eventual success of a clinical trial to meet its goals. In this paper we derive mathematical expressions for the most common types of outcomes, to make the BPP accessible to practitioners, facilitate fast computations in adaptive trial design simulations that use interim futility monitoring, and propose an organized BPP‐based phase II‐to‐phase III design framework.
科研通智能强力驱动
Strongly Powered by AbleSci AI