Preoperative CT-based Deep Learning Model for Predicting Disease-Free Survival in Patients with Lung Adenocarcinomas

医学 疾病 放射科 腺癌 内科学 肿瘤科 癌症
作者
Hyungjin Kim,Jin Mo Goo,Kyung Hee Lee,Young Tae Kim,Chang Min Park
出处
期刊:Radiology [Radiological Society of North America]
卷期号:296 (1): 216-224 被引量:114
标识
DOI:10.1148/radiol.2020192764
摘要

Background Deep learning models have the potential for lung cancer prognostication, but model output as an independent prognostic factor must be validated with clinical risk factors. Purpose To develop and validate a preoperative CT-based deep learning model for predicting disease-free survival in patients with lung adenocarcinoma. Materials and Methods In this retrospective study, a deep learning model was trained to extract prognostic information from preoperative CT examinations. Data set 1 for training, tuning, and internal validation consisted of patients with T1-4N0M0 adenocarcinoma resected between 2009 and 2015. Data set 2 for external validation included patients with clinical T1-2aN0M0 (stage I) adenocarcinomas resected in 2014. Discrimination was assessed by using Harrell C index and benchmarked against the clinical T category. The Greenwood-Nam-D'Agostino test was used for model calibration. The multivariable-adjusted hazard ratios (HRs) were analyzed with clinical prognostic factors by using the Cox regression. Results Evaluated were 800 patients (median age, 64 years; interquartile range, 56-70 years; 450 women) in data set 1 and 108 patients (median age, 63 years; interquartile range, 57-71 years; 60 women) in data set 2. The C indexes were 0.74-0.80 in the internal validation and 0.71-0.78 in the external validation, both comparable with the clinical T category (0.78 in the internal validation and 0.74 in the external validation; all P > .05). The model exhibited good calibration in all data sets (P > .05). Multivariable Cox regression revealed that model outputs were independent prognostic factors (hazard ratio [HR] of the categorical output, 2.5 [95% confidence interval {CI}: 1.03, 5.9; P = .04] in the internal validation and 3.6 [95% CI: 1.6, 8.5; P = .003] in the external validation). Other than the deep learning model, only smoking status (HR, 3.4; 95% CI: 1.4, 8.5; P = .007) contributed further to prediction of disease-free survival for patients after resection of clinical stage I adenocarcinomas. Conclusion A deep learning model for chest CT predicted disease-free survival for patients undergoing an operation for clinical stage I lung adenocarcinoma. © RSNA, 2020 Online supplemental material is available for this article. See also the editorial by Shaffer in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助路不迷采纳,获得10
刚刚
海潮飞翔发布了新的文献求助10
刚刚
1秒前
1秒前
西海岸的风完成签到,获得积分10
1秒前
e麓绝尘完成签到 ,获得积分10
2秒前
小七完成签到 ,获得积分10
3秒前
幸运小狗完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
马老师发布了新的文献求助10
4秒前
硕shuo完成签到,获得积分10
5秒前
cqh完成签到 ,获得积分10
6秒前
共享精神应助俊逸的翅膀采纳,获得10
6秒前
7秒前
Tperm发布了新的文献求助20
7秒前
7秒前
7秒前
王晓茜发布了新的文献求助10
7秒前
8秒前
8秒前
刻苦的怀曼完成签到 ,获得积分10
9秒前
夏蓉完成签到,获得积分10
10秒前
howard发布了新的文献求助10
11秒前
情怀应助明亮的幻竹采纳,获得10
11秒前
11秒前
晓凡发布了新的文献求助10
12秒前
任我行发布了新的文献求助10
12秒前
潘广瑞完成签到,获得积分10
13秒前
13秒前
科研修沟发布了新的文献求助10
14秒前
故事的小黄花完成签到,获得积分10
16秒前
领导范儿应助Tperm采纳,获得20
16秒前
huntme完成签到,获得积分10
17秒前
TATA发布了新的文献求助10
17秒前
18秒前
自由滑大王完成签到 ,获得积分10
20秒前
CodeCraft应助彩色的夏青采纳,获得10
20秒前
李洁完成签到,获得积分10
22秒前
CodeCraft应助王晓茜采纳,获得10
24秒前
24秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620667
求助须知:如何正确求助?哪些是违规求助? 4705247
关于积分的说明 14930934
捐赠科研通 4762530
什么是DOI,文献DOI怎么找? 2551078
邀请新用户注册赠送积分活动 1513735
关于科研通互助平台的介绍 1474655