Preoperative CT-based Deep Learning Model for Predicting Disease-Free Survival in Patients with Lung Adenocarcinomas

医学 疾病 放射科 腺癌 内科学 肿瘤科 癌症
作者
Hyungjin Kim,Jin Mo Goo,Kyung Hee Lee,Young Tae Kim,Chang Min Park
出处
期刊:Radiology [Radiological Society of North America]
卷期号:296 (1): 216-224 被引量:110
标识
DOI:10.1148/radiol.2020192764
摘要

Background Deep learning models have the potential for lung cancer prognostication, but model output as an independent prognostic factor must be validated with clinical risk factors. Purpose To develop and validate a preoperative CT-based deep learning model for predicting disease-free survival in patients with lung adenocarcinoma. Materials and Methods In this retrospective study, a deep learning model was trained to extract prognostic information from preoperative CT examinations. Data set 1 for training, tuning, and internal validation consisted of patients with T1-4N0M0 adenocarcinoma resected between 2009 and 2015. Data set 2 for external validation included patients with clinical T1-2aN0M0 (stage I) adenocarcinomas resected in 2014. Discrimination was assessed by using Harrell C index and benchmarked against the clinical T category. The Greenwood-Nam-D'Agostino test was used for model calibration. The multivariable-adjusted hazard ratios (HRs) were analyzed with clinical prognostic factors by using the Cox regression. Results Evaluated were 800 patients (median age, 64 years; interquartile range, 56-70 years; 450 women) in data set 1 and 108 patients (median age, 63 years; interquartile range, 57-71 years; 60 women) in data set 2. The C indexes were 0.74-0.80 in the internal validation and 0.71-0.78 in the external validation, both comparable with the clinical T category (0.78 in the internal validation and 0.74 in the external validation; all P > .05). The model exhibited good calibration in all data sets (P > .05). Multivariable Cox regression revealed that model outputs were independent prognostic factors (hazard ratio [HR] of the categorical output, 2.5 [95% confidence interval {CI}: 1.03, 5.9; P = .04] in the internal validation and 3.6 [95% CI: 1.6, 8.5; P = .003] in the external validation). Other than the deep learning model, only smoking status (HR, 3.4; 95% CI: 1.4, 8.5; P = .007) contributed further to prediction of disease-free survival for patients after resection of clinical stage I adenocarcinomas. Conclusion A deep learning model for chest CT predicted disease-free survival for patients undergoing an operation for clinical stage I lung adenocarcinoma. © RSNA, 2020 Online supplemental material is available for this article. See also the editorial by Shaffer in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CAOHOU应助dddd采纳,获得10
1秒前
Smiling完成签到 ,获得积分10
6秒前
小林神完成签到,获得积分10
7秒前
xiaofenzi完成签到,获得积分10
11秒前
mix完成签到 ,获得积分10
17秒前
18秒前
量子星尘发布了新的文献求助10
19秒前
Banff完成签到,获得积分10
20秒前
20秒前
baomingqiu完成签到 ,获得积分10
22秒前
MS903完成签到 ,获得积分10
23秒前
哈哈哈发布了新的文献求助10
23秒前
fuws完成签到 ,获得积分10
23秒前
关外李少发布了新的文献求助10
24秒前
xzy998应助科研通管家采纳,获得10
25秒前
爆米花应助科研通管家采纳,获得10
25秒前
jueshadi完成签到 ,获得积分10
27秒前
轻语完成签到 ,获得积分10
29秒前
31秒前
star完成签到,获得积分10
31秒前
小李完成签到 ,获得积分10
32秒前
CJW完成签到 ,获得积分10
33秒前
华理附院孙文博完成签到 ,获得积分10
33秒前
zyz完成签到,获得积分10
35秒前
fomo完成签到,获得积分10
38秒前
ding应助cavendipeng采纳,获得10
39秒前
终于花开日完成签到 ,获得积分10
41秒前
K. G.完成签到,获得积分0
41秒前
沙里飞完成签到 ,获得积分10
42秒前
bing完成签到,获得积分10
44秒前
友好语风完成签到,获得积分10
45秒前
46秒前
bigpluto完成签到,获得积分10
47秒前
K先生完成签到 ,获得积分10
49秒前
CLTTTt完成签到,获得积分10
49秒前
易水寒完成签到 ,获得积分10
49秒前
51秒前
51秒前
HY完成签到,获得积分10
55秒前
小城故事和冰雨完成签到,获得积分10
56秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015640
求助须知:如何正确求助?哪些是违规求助? 3555625
关于积分的说明 11318138
捐赠科研通 3288796
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812015