Preoperative CT-based Deep Learning Model for Predicting Disease-Free Survival in Patients with Lung Adenocarcinomas

医学 疾病 放射科 腺癌 内科学 肿瘤科 癌症
作者
Hyungjin Kim,Jin Mo Goo,Kyung Hee Lee,Young Tae Kim,Chang Min Park
出处
期刊:Radiology [Radiological Society of North America]
卷期号:296 (1): 216-224 被引量:114
标识
DOI:10.1148/radiol.2020192764
摘要

Background Deep learning models have the potential for lung cancer prognostication, but model output as an independent prognostic factor must be validated with clinical risk factors. Purpose To develop and validate a preoperative CT-based deep learning model for predicting disease-free survival in patients with lung adenocarcinoma. Materials and Methods In this retrospective study, a deep learning model was trained to extract prognostic information from preoperative CT examinations. Data set 1 for training, tuning, and internal validation consisted of patients with T1-4N0M0 adenocarcinoma resected between 2009 and 2015. Data set 2 for external validation included patients with clinical T1-2aN0M0 (stage I) adenocarcinomas resected in 2014. Discrimination was assessed by using Harrell C index and benchmarked against the clinical T category. The Greenwood-Nam-D'Agostino test was used for model calibration. The multivariable-adjusted hazard ratios (HRs) were analyzed with clinical prognostic factors by using the Cox regression. Results Evaluated were 800 patients (median age, 64 years; interquartile range, 56-70 years; 450 women) in data set 1 and 108 patients (median age, 63 years; interquartile range, 57-71 years; 60 women) in data set 2. The C indexes were 0.74-0.80 in the internal validation and 0.71-0.78 in the external validation, both comparable with the clinical T category (0.78 in the internal validation and 0.74 in the external validation; all P > .05). The model exhibited good calibration in all data sets (P > .05). Multivariable Cox regression revealed that model outputs were independent prognostic factors (hazard ratio [HR] of the categorical output, 2.5 [95% confidence interval {CI}: 1.03, 5.9; P = .04] in the internal validation and 3.6 [95% CI: 1.6, 8.5; P = .003] in the external validation). Other than the deep learning model, only smoking status (HR, 3.4; 95% CI: 1.4, 8.5; P = .007) contributed further to prediction of disease-free survival for patients after resection of clinical stage I adenocarcinomas. Conclusion A deep learning model for chest CT predicted disease-free survival for patients undergoing an operation for clinical stage I lung adenocarcinoma. © RSNA, 2020 Online supplemental material is available for this article. See also the editorial by Shaffer in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
看不懂发布了新的文献求助10
2秒前
Rick完成签到,获得积分10
3秒前
3秒前
5秒前
长情平彤完成签到,获得积分10
5秒前
然来溪完成签到 ,获得积分10
5秒前
5秒前
6秒前
6秒前
7秒前
7秒前
wy.he应助yyl采纳,获得10
7秒前
orixero应助momo采纳,获得10
7秒前
123完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
kingkingmai完成签到 ,获得积分10
9秒前
10秒前
10秒前
ZY发布了新的文献求助10
11秒前
13秒前
NexusExplorer应助健壮涵柳采纳,获得10
14秒前
15秒前
Motorhead完成签到,获得积分10
16秒前
cindy发布了新的文献求助10
16秒前
榴莲完成签到,获得积分10
17秒前
18秒前
19秒前
魔幻惊蛰完成签到 ,获得积分10
20秒前
RLwan发布了新的文献求助10
21秒前
22秒前
22秒前
23秒前
24秒前
25秒前
清欢完成签到 ,获得积分10
25秒前
共享精神应助111采纳,获得10
26秒前
110o发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
COATING AND DRYINGDEEECTSTroubleshooting Operating Problems 600
涂布技术与设备手册 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5569662
求助须知:如何正确求助?哪些是违规求助? 4654638
关于积分的说明 14710375
捐赠科研通 4595950
什么是DOI,文献DOI怎么找? 2522192
邀请新用户注册赠送积分活动 1493397
关于科研通互助平台的介绍 1463987