Preoperative CT-based Deep Learning Model for Predicting Disease-Free Survival in Patients with Lung Adenocarcinomas

医学 疾病 放射科 腺癌 内科学 肿瘤科 癌症
作者
Hyungjin Kim,Jin Mo Goo,Kyung Hee Lee,Young Tae Kim,Chang Min Park
出处
期刊:Radiology [Radiological Society of North America]
卷期号:296 (1): 216-224 被引量:105
标识
DOI:10.1148/radiol.2020192764
摘要

Background Deep learning models have the potential for lung cancer prognostication, but model output as an independent prognostic factor must be validated with clinical risk factors. Purpose To develop and validate a preoperative CT-based deep learning model for predicting disease-free survival in patients with lung adenocarcinoma. Materials and Methods In this retrospective study, a deep learning model was trained to extract prognostic information from preoperative CT examinations. Data set 1 for training, tuning, and internal validation consisted of patients with T1-4N0M0 adenocarcinoma resected between 2009 and 2015. Data set 2 for external validation included patients with clinical T1-2aN0M0 (stage I) adenocarcinomas resected in 2014. Discrimination was assessed by using Harrell C index and benchmarked against the clinical T category. The Greenwood-Nam-D'Agostino test was used for model calibration. The multivariable-adjusted hazard ratios (HRs) were analyzed with clinical prognostic factors by using the Cox regression. Results Evaluated were 800 patients (median age, 64 years; interquartile range, 56-70 years; 450 women) in data set 1 and 108 patients (median age, 63 years; interquartile range, 57-71 years; 60 women) in data set 2. The C indexes were 0.74-0.80 in the internal validation and 0.71-0.78 in the external validation, both comparable with the clinical T category (0.78 in the internal validation and 0.74 in the external validation; all P > .05). The model exhibited good calibration in all data sets (P > .05). Multivariable Cox regression revealed that model outputs were independent prognostic factors (hazard ratio [HR] of the categorical output, 2.5 [95% confidence interval {CI}: 1.03, 5.9; P = .04] in the internal validation and 3.6 [95% CI: 1.6, 8.5; P = .003] in the external validation). Other than the deep learning model, only smoking status (HR, 3.4; 95% CI: 1.4, 8.5; P = .007) contributed further to prediction of disease-free survival for patients after resection of clinical stage I adenocarcinomas. Conclusion A deep learning model for chest CT predicted disease-free survival for patients undergoing an operation for clinical stage I lung adenocarcinoma. © RSNA, 2020 Online supplemental material is available for this article. See also the editorial by Shaffer in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
礼貌问好发布了新的文献求助10
刚刚
D1504009654完成签到,获得积分10
1秒前
2秒前
3秒前
4秒前
5秒前
欢迎scid完成签到,获得积分10
6秒前
6秒前
77发布了新的文献求助30
8秒前
9秒前
笑笑给笑笑的求助进行了留言
9秒前
李健的粉丝团团长应助yxl采纳,获得10
11秒前
完美世界应助wrufhg采纳,获得10
11秒前
Dontcare发布了新的文献求助10
14秒前
科目三应助无奈枕头采纳,获得10
15秒前
庞伟泽发布了新的文献求助10
16秒前
xrl完成签到,获得积分10
18秒前
CipherSage应助Ars采纳,获得10
19秒前
wanci应助zhouleiwang采纳,获得10
20秒前
22秒前
feizao完成签到,获得积分10
25秒前
踏山河完成签到,获得积分10
26秒前
MP完成签到,获得积分0
26秒前
Rubisco发布了新的文献求助10
27秒前
27秒前
screct完成签到,获得积分10
28秒前
wangyaya应助收敛采纳,获得10
29秒前
大模型应助slin_sjtu采纳,获得10
30秒前
赵雪萌发布了新的文献求助10
31秒前
甜甜玫瑰应助Zephyr采纳,获得10
31秒前
32秒前
彩色的襄发布了新的文献求助10
32秒前
33秒前
研友_VZG7GZ应助懦弱的难敌采纳,获得10
34秒前
研友_VZG7GZ应助Le采纳,获得10
34秒前
广州南完成签到 ,获得积分10
34秒前
付尔一笑完成签到,获得积分10
36秒前
小晚风给小晚风的求助进行了留言
36秒前
外向的雁玉完成签到,获得积分10
36秒前
37秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3329716
求助须知:如何正确求助?哪些是违规求助? 2959333
关于积分的说明 8595189
捐赠科研通 2637764
什么是DOI,文献DOI怎么找? 1443774
科研通“疑难数据库(出版商)”最低求助积分说明 668843
邀请新用户注册赠送积分活动 656280