Preoperative CT-based Deep Learning Model for Predicting Disease-Free Survival in Patients with Lung Adenocarcinomas

医学 疾病 放射科 腺癌 内科学 肿瘤科 癌症
作者
Hyungjin Kim,Jin Mo Goo,Kyung Hee Lee,Young Tae Kim,Chang Min Park
出处
期刊:Radiology [Radiological Society of North America]
卷期号:296 (1): 216-224 被引量:114
标识
DOI:10.1148/radiol.2020192764
摘要

Background Deep learning models have the potential for lung cancer prognostication, but model output as an independent prognostic factor must be validated with clinical risk factors. Purpose To develop and validate a preoperative CT-based deep learning model for predicting disease-free survival in patients with lung adenocarcinoma. Materials and Methods In this retrospective study, a deep learning model was trained to extract prognostic information from preoperative CT examinations. Data set 1 for training, tuning, and internal validation consisted of patients with T1-4N0M0 adenocarcinoma resected between 2009 and 2015. Data set 2 for external validation included patients with clinical T1-2aN0M0 (stage I) adenocarcinomas resected in 2014. Discrimination was assessed by using Harrell C index and benchmarked against the clinical T category. The Greenwood-Nam-D'Agostino test was used for model calibration. The multivariable-adjusted hazard ratios (HRs) were analyzed with clinical prognostic factors by using the Cox regression. Results Evaluated were 800 patients (median age, 64 years; interquartile range, 56-70 years; 450 women) in data set 1 and 108 patients (median age, 63 years; interquartile range, 57-71 years; 60 women) in data set 2. The C indexes were 0.74-0.80 in the internal validation and 0.71-0.78 in the external validation, both comparable with the clinical T category (0.78 in the internal validation and 0.74 in the external validation; all P > .05). The model exhibited good calibration in all data sets (P > .05). Multivariable Cox regression revealed that model outputs were independent prognostic factors (hazard ratio [HR] of the categorical output, 2.5 [95% confidence interval {CI}: 1.03, 5.9; P = .04] in the internal validation and 3.6 [95% CI: 1.6, 8.5; P = .003] in the external validation). Other than the deep learning model, only smoking status (HR, 3.4; 95% CI: 1.4, 8.5; P = .007) contributed further to prediction of disease-free survival for patients after resection of clinical stage I adenocarcinomas. Conclusion A deep learning model for chest CT predicted disease-free survival for patients undergoing an operation for clinical stage I lung adenocarcinoma. © RSNA, 2020 Online supplemental material is available for this article. See also the editorial by Shaffer in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助凄凉山谷的风采纳,获得10
2秒前
科研通AI6应助冰冻西红柿采纳,获得10
2秒前
顾矜应助李嘉睿采纳,获得10
2秒前
赘婿应助风清扬采纳,获得10
2秒前
儒雅的夏山完成签到,获得积分10
3秒前
Joy完成签到,获得积分10
3秒前
今后应助陶醉的念之采纳,获得10
3秒前
Orange应助Tao2023采纳,获得10
3秒前
4秒前
4秒前
华仔应助cndxh采纳,获得10
4秒前
十五完成签到,获得积分10
4秒前
4秒前
高大的冰双完成签到,获得积分10
6秒前
海盗船长发布了新的文献求助10
6秒前
7秒前
focus发布了新的文献求助10
7秒前
饱满衬衫发布了新的文献求助10
8秒前
科研通AI6应助Dobrzs采纳,获得30
9秒前
9秒前
Www发布了新的文献求助30
10秒前
10秒前
赘婿应助丫丫采纳,获得10
10秒前
量子星尘发布了新的文献求助10
11秒前
bcyxc应助Joy采纳,获得10
11秒前
高高碧完成签到,获得积分10
12秒前
apple完成签到,获得积分10
12秒前
LUFFY完成签到,获得积分10
13秒前
cndxh完成签到,获得积分10
13秒前
香蕉茉莉发布了新的文献求助10
14秒前
seven发布了新的文献求助80
15秒前
且慢应助果粒登采纳,获得50
15秒前
16秒前
hynni完成签到 ,获得积分10
17秒前
浮游应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得30
18秒前
18秒前
Jayem应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
共享精神应助科研通管家采纳,获得15
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627241
求助须知:如何正确求助?哪些是违规求助? 4713226
关于积分的说明 14961499
捐赠科研通 4784040
什么是DOI,文献DOI怎么找? 2554754
邀请新用户注册赠送积分活动 1516304
关于科研通互助平台的介绍 1476655