Preoperative CT-based Deep Learning Model for Predicting Disease-Free Survival in Patients with Lung Adenocarcinomas

医学 疾病 放射科 腺癌 内科学 肿瘤科 癌症
作者
Hyungjin Kim,Jin Mo Goo,Kyung Hee Lee,Young Tae Kim,Chang Min Park
出处
期刊:Radiology [Radiological Society of North America]
卷期号:296 (1): 216-224 被引量:114
标识
DOI:10.1148/radiol.2020192764
摘要

Background Deep learning models have the potential for lung cancer prognostication, but model output as an independent prognostic factor must be validated with clinical risk factors. Purpose To develop and validate a preoperative CT-based deep learning model for predicting disease-free survival in patients with lung adenocarcinoma. Materials and Methods In this retrospective study, a deep learning model was trained to extract prognostic information from preoperative CT examinations. Data set 1 for training, tuning, and internal validation consisted of patients with T1-4N0M0 adenocarcinoma resected between 2009 and 2015. Data set 2 for external validation included patients with clinical T1-2aN0M0 (stage I) adenocarcinomas resected in 2014. Discrimination was assessed by using Harrell C index and benchmarked against the clinical T category. The Greenwood-Nam-D'Agostino test was used for model calibration. The multivariable-adjusted hazard ratios (HRs) were analyzed with clinical prognostic factors by using the Cox regression. Results Evaluated were 800 patients (median age, 64 years; interquartile range, 56-70 years; 450 women) in data set 1 and 108 patients (median age, 63 years; interquartile range, 57-71 years; 60 women) in data set 2. The C indexes were 0.74-0.80 in the internal validation and 0.71-0.78 in the external validation, both comparable with the clinical T category (0.78 in the internal validation and 0.74 in the external validation; all P > .05). The model exhibited good calibration in all data sets (P > .05). Multivariable Cox regression revealed that model outputs were independent prognostic factors (hazard ratio [HR] of the categorical output, 2.5 [95% confidence interval {CI}: 1.03, 5.9; P = .04] in the internal validation and 3.6 [95% CI: 1.6, 8.5; P = .003] in the external validation). Other than the deep learning model, only smoking status (HR, 3.4; 95% CI: 1.4, 8.5; P = .007) contributed further to prediction of disease-free survival for patients after resection of clinical stage I adenocarcinomas. Conclusion A deep learning model for chest CT predicted disease-free survival for patients undergoing an operation for clinical stage I lung adenocarcinoma. © RSNA, 2020 Online supplemental material is available for this article. See also the editorial by Shaffer in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
贪玩的起眸完成签到,获得积分20
刚刚
摔碎玻璃瓶完成签到,获得积分10
刚刚
1秒前
Meyako应助Desserts采纳,获得10
1秒前
Amin完成签到,获得积分10
1秒前
2秒前
无可匹敌的饭量完成签到,获得积分10
2秒前
科目三应助Fire采纳,获得10
2秒前
3秒前
kk完成签到,获得积分20
4秒前
Jim发布了新的文献求助10
4秒前
4秒前
绿小豆发布了新的文献求助10
4秒前
5秒前
comeongong发布了新的文献求助10
5秒前
快乐小狗完成签到,获得积分10
5秒前
领导范儿应助Apple_cat采纳,获得10
6秒前
只只发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
7秒前
华仔应助Dr.c采纳,获得10
8秒前
霜卿发布了新的文献求助10
9秒前
善学以致用应助踏青采纳,获得10
10秒前
lynn发布了新的文献求助10
10秒前
10秒前
10秒前
一谩完成签到,获得积分10
10秒前
Mecury完成签到,获得积分10
10秒前
12秒前
xuan发布了新的文献求助10
12秒前
彩色的紫丝完成签到,获得积分10
12秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
不想干活应助走远了采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4609179
求助须知:如何正确求助?哪些是违规求助? 4015494
关于积分的说明 12433101
捐赠科研通 3696772
什么是DOI,文献DOI怎么找? 2038356
邀请新用户注册赠送积分活动 1071375
科研通“疑难数据库(出版商)”最低求助积分说明 955185