Strengthen EEG-based emotion recognition using firefly integrated optimization algorithm

计算机科学 人工智能 模式识别(心理学) 萤火虫算法 二元分类 分类器(UML) 支持向量机 特征选择 情绪分类 脑电图 粒子群优化 情绪识别 机器学习 心理学 精神科
作者
Hong He,Yonghong Tan,Ying Jun,Wuxiong Zhang
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:94: 106426-106426 被引量:58
标识
DOI:10.1016/j.asoc.2020.106426
摘要

Emotion recognition is helpful for human to enhance self-awareness and respond appropriately towards the happenings around them. Due to the complexity and diversity of emotions, EEG-based emotion recognition is still a challenging task in pattern recognition. In order to recognize diverse emotions, we propose a novel firefly integrated optimization algorithm (FIOA) in this paper. It can simultaneously accomplish multiple tasks, i.e. the optimal feature selection, parameter setting and classifier selection according to different EEG-based emotion datasets. The FIOA utilizes a ranking probability objection function to guarantee the high accuracy recognition with less features. Moreover, the hybrid encoding expression and the dual updating strategy are developed in the FIOA so as to realize the optimal selection of feature subset and classifier without stagnating in the local optimum. In addition to the public DEAP datasets, we also conducted an EEG-based music emotion experiment involving 20 subjects for the validation of the proposed FIOA. After filtering and segmentation, three categories of features were extracted from every EEG signal. Then FIOA was applied to every subject dataset for two pattern recognition of emotions. The results show that the FIOA can automatically find the optimal features, parameter and classifier for different emotion datasets, which greatly reduces the artificial selection workload. Furthermore, comparing with the binary particle swarm optimization (PSObinary) and the binary firefly (FAbinary), the FIOA can achieve the higher accuracy with less features in the emotion recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aha发布了新的文献求助10
刚刚
春和景明完成签到,获得积分10
1秒前
孙闹闹发布了新的文献求助10
2秒前
无花果应助yuyu采纳,获得10
2秒前
坦率的傲芙完成签到,获得积分10
2秒前
WXP发布了新的文献求助10
4秒前
4秒前
轻松的虔完成签到,获得积分10
6秒前
科研通AI2S应助丰富的初南采纳,获得10
10秒前
10秒前
共享精神应助开朗嵩采纳,获得10
11秒前
bkagyin应助李振博采纳,获得10
15秒前
17秒前
Painkiller_完成签到,获得积分10
17秒前
18秒前
aldehyde应助mmyhn采纳,获得10
18秒前
18秒前
yangyong完成签到,获得积分10
20秒前
孙闹闹完成签到,获得积分10
21秒前
21秒前
夏侯丹烟发布了新的文献求助10
22秒前
wy.he应助宇文雨文采纳,获得30
22秒前
22秒前
彳亍1117应助欣喜蘑菇采纳,获得20
22秒前
23秒前
24秒前
25秒前
26秒前
扎心应助科研通管家采纳,获得10
28秒前
花生仔应助科研通管家采纳,获得10
28秒前
SYLH应助科研通管家采纳,获得10
28秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
扎心应助科研通管家采纳,获得10
28秒前
SYLH应助科研通管家采纳,获得10
28秒前
SYLH应助科研通管家采纳,获得10
28秒前
花生仔应助科研通管家采纳,获得10
28秒前
bkagyin应助科研通管家采纳,获得10
28秒前
烟花应助坚定的玉米采纳,获得10
29秒前
FashionBoy应助科研通管家采纳,获得10
29秒前
SYLH应助科研通管家采纳,获得10
29秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962475
求助须知:如何正确求助?哪些是违规求助? 3508497
关于积分的说明 11141410
捐赠科研通 3241254
什么是DOI,文献DOI怎么找? 1791445
邀请新用户注册赠送积分活动 872863
科研通“疑难数据库(出版商)”最低求助积分说明 803417