亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Strengthen EEG-based emotion recognition using firefly integrated optimization algorithm

计算机科学 人工智能 模式识别(心理学) 萤火虫算法 二元分类 分类器(UML) 支持向量机 特征选择 情绪分类 脑电图 粒子群优化 情绪识别 机器学习 心理学 精神科
作者
Hong He,Yonghong Tan,Ying Jun,Wuxiong Zhang
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:94: 106426-106426 被引量:58
标识
DOI:10.1016/j.asoc.2020.106426
摘要

Emotion recognition is helpful for human to enhance self-awareness and respond appropriately towards the happenings around them. Due to the complexity and diversity of emotions, EEG-based emotion recognition is still a challenging task in pattern recognition. In order to recognize diverse emotions, we propose a novel firefly integrated optimization algorithm (FIOA) in this paper. It can simultaneously accomplish multiple tasks, i.e. the optimal feature selection, parameter setting and classifier selection according to different EEG-based emotion datasets. The FIOA utilizes a ranking probability objection function to guarantee the high accuracy recognition with less features. Moreover, the hybrid encoding expression and the dual updating strategy are developed in the FIOA so as to realize the optimal selection of feature subset and classifier without stagnating in the local optimum. In addition to the public DEAP datasets, we also conducted an EEG-based music emotion experiment involving 20 subjects for the validation of the proposed FIOA. After filtering and segmentation, three categories of features were extracted from every EEG signal. Then FIOA was applied to every subject dataset for two pattern recognition of emotions. The results show that the FIOA can automatically find the optimal features, parameter and classifier for different emotion datasets, which greatly reduces the artificial selection workload. Furthermore, comparing with the binary particle swarm optimization (PSObinary) and the binary firefly (FAbinary), the FIOA can achieve the higher accuracy with less features in the emotion recognition.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wuyuxuan完成签到 ,获得积分10
8秒前
9秒前
量子星尘发布了新的文献求助10
12秒前
ceeray23发布了新的文献求助20
13秒前
wanci应助桉钰采纳,获得10
21秒前
22秒前
27秒前
林哈哈完成签到,获得积分20
27秒前
林哈哈发布了新的文献求助10
30秒前
香蕉觅云应助郭楠楠采纳,获得10
43秒前
43秒前
49秒前
1分钟前
1分钟前
郭楠楠发布了新的文献求助10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得50
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
从容芮应助科研通管家采纳,获得100
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
希望天下0贩的0应助Huck采纳,获得10
1分钟前
1分钟前
1分钟前
binbinbin完成签到,获得积分20
1分钟前
Huck发布了新的文献求助10
1分钟前
小蘑菇应助买三个包子吧采纳,获得10
2分钟前
烟花应助林哈哈采纳,获得10
2分钟前
andrele发布了新的文献求助10
2分钟前
2分钟前
彭于晏应助舒服的觅夏采纳,获得10
2分钟前
Yini应助酷酷紫易采纳,获得100
2分钟前
3分钟前
3分钟前
四季刻歌发布了新的文献求助10
3分钟前
Huck完成签到,获得积分10
3分钟前
四季刻歌完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664254
求助须知:如何正确求助?哪些是违规求助? 4859865
关于积分的说明 15107409
捐赠科研通 4822762
什么是DOI,文献DOI怎么找? 2581727
邀请新用户注册赠送积分活动 1535924
关于科研通互助平台的介绍 1494124