Strengthen EEG-based emotion recognition using firefly integrated optimization algorithm

计算机科学 人工智能 模式识别(心理学) 萤火虫算法 二元分类 分类器(UML) 支持向量机 特征选择 情绪分类 脑电图 粒子群优化 情绪识别 机器学习 心理学 精神科
作者
Hong He,Yonghong Tan,Ying Jun,Wuxiong Zhang
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:94: 106426-106426 被引量:58
标识
DOI:10.1016/j.asoc.2020.106426
摘要

Emotion recognition is helpful for human to enhance self-awareness and respond appropriately towards the happenings around them. Due to the complexity and diversity of emotions, EEG-based emotion recognition is still a challenging task in pattern recognition. In order to recognize diverse emotions, we propose a novel firefly integrated optimization algorithm (FIOA) in this paper. It can simultaneously accomplish multiple tasks, i.e. the optimal feature selection, parameter setting and classifier selection according to different EEG-based emotion datasets. The FIOA utilizes a ranking probability objection function to guarantee the high accuracy recognition with less features. Moreover, the hybrid encoding expression and the dual updating strategy are developed in the FIOA so as to realize the optimal selection of feature subset and classifier without stagnating in the local optimum. In addition to the public DEAP datasets, we also conducted an EEG-based music emotion experiment involving 20 subjects for the validation of the proposed FIOA. After filtering and segmentation, three categories of features were extracted from every EEG signal. Then FIOA was applied to every subject dataset for two pattern recognition of emotions. The results show that the FIOA can automatically find the optimal features, parameter and classifier for different emotion datasets, which greatly reduces the artificial selection workload. Furthermore, comparing with the binary particle swarm optimization (PSObinary) and the binary firefly (FAbinary), the FIOA can achieve the higher accuracy with less features in the emotion recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ding应助纳格兰采纳,获得10
1秒前
Veronica发布了新的文献求助10
1秒前
1秒前
Orange应助无情的宛儿采纳,获得30
3秒前
让大佐眯会吧完成签到,获得积分10
3秒前
嘴巴张大一点完成签到,获得积分10
4秒前
4秒前
Mark发布了新的文献求助10
6秒前
yeyeye发布了新的文献求助10
6秒前
LZYJJ发布了新的文献求助10
6秒前
6秒前
朝阳发布了新的文献求助10
8秒前
v111发布了新的文献求助10
8秒前
sedrakyan完成签到 ,获得积分10
8秒前
9秒前
汉堡包应助炙热往事采纳,获得10
9秒前
心云完成签到,获得积分10
9秒前
纳格兰完成签到,获得积分10
9秒前
fhznuli发布了新的文献求助10
10秒前
schuang完成签到,获得积分10
11秒前
炙热的若枫完成签到 ,获得积分10
11秒前
11秒前
12秒前
14秒前
Pocketter发布了新的文献求助10
15秒前
甜甜的采蓝完成签到 ,获得积分10
15秒前
15秒前
叶子完成签到,获得积分10
17秒前
JamesPei应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
共享精神应助科研通管家采纳,获得10
18秒前
大模型应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
19秒前
19秒前
悦耳的万言完成签到,获得积分10
20秒前
张小医完成签到,获得积分10
20秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Handbook of Prejudice, Stereotyping, and Discrimination (3rd Ed. 2024) 1200
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3243918
求助须知:如何正确求助?哪些是违规求助? 2887807
关于积分的说明 8249895
捐赠科研通 2556414
什么是DOI,文献DOI怎么找? 1384557
科研通“疑难数据库(出版商)”最低求助积分说明 649901
邀请新用户注册赠送积分活动 625867