生物
肠道菌群
脂质代谢
丙氨酸转氨酶
失调
斑马鱼
厚壁菌
代谢紊乱
内科学
内分泌学
生物化学
医学
16S核糖体RNA
基因
作者
Zhiwei Bao,Yao Zhao,Anyi Wu,Ze Lou,Huahui Lu,Qianxuan Yu,Zhengwei Fu,Yuanxiang Jin
标识
DOI:10.1016/j.scitotenv.2020.140081
摘要
Carbendazim (CBZ) as a broad spectrum fungicide is widely used in the whole world to contorl plant diseases. With the application of CBZ in the agriculture, it has been detected in vegetables and fruits. Nowadays, it even has been detected in the watercourse and indoor dust. However, the toxic effects of CBZ on aquatic organisms have received limited attention. In this study, male adult zebrafish were exposed at 0, 30 and 100 μg/L CBZ for 21 days to assess its effects on hepatic glycolipid metabolism. After exposure, the body weight and length decreased, but the condition factor increased significantly. Some hepatic biochemical parameters including the levels of glucose, pyruvate, low density lipoprotein (LDL) and triglyceride (TG) decreased significantly in the liver of zebrafish after exposure with CBZ. Two transaminases alanine transaminase (ALT) and aspartate transaminase (AST) also increased significantly, indicating that subchronic CBZ exposure influenced the liver function. Moreover, the relative mRNA levels of some key genes related to the glycolysis and lipid metabolism in the liver also changed significantly. Furthermore, the transcriptome analysis showed that the carbon metabolism, lipid metabolism and detoxification metabolism were also affected in the liver of CBZ exposed zebrafish. Interestingly, we also found the amounts of the Firmicutes, Bacteroidetes, Actinobacteria, α-Proteobacteria, γ-Proteobacteria and Verrucomicrobia at phylum level significantly decreased in the gut. Sequencing V3-V4 region of 16S rRNA also demonstrated gut microbiota composition changed significantly according to weighted UniFrac distance analysis. Consequently, subchronic CBZ exposure induced hepatic metabolic disorder accompanied by gut microbiota dysbiosis in adult male zebrafish.
科研通智能强力驱动
Strongly Powered by AbleSci AI