细胞凋亡
小胶质细胞
活力测定
免疫印迹
细胞生物学
生物
车站3
化学
癌症研究
免疫学
炎症
生物化学
基因
作者
Yingying Fang,Jinghui Zhang
标识
DOI:10.1080/00207454.2020.1732971
摘要
Background: Ischemic stroke is a complex pathological process, involving inflammatory reaction, energy metabolism disorder, free radical injury, cell apoptosis and other aspects. Accumulating evidences have revealed that MFG-E8 had a protective effect on multiple organ injuries. However, the comprehensive function and mechanism of MFG-E8 in ischemic brain remain largely unclear.Methods: BV-2 cells were treated with recombinant murine MFG-E8 (rmMFG-E8) or/and Colivelin TFA after exposing for 4 h with oxygen glucose deprivation (OGD). Cell viability and apoptosis were assessed by MTT assay and Flow cytometry. RT-qPCR and Western blot assays were applied to examine the expression levels of MFG-E8, apoptosis-related proteins and M1/M2 polarization markers.Results: Our results demonstrated that OGD significantly inhibited microglial viability and facilitated apoptosis. In addition, we found that OGD downregulated MFG-E8 expression, and MFG-E8 inhibited OGD-induced microglial apoptosis and promoted microglial M2 polarization. In terms of mechanism, we proved that MFG-E8 regulated OGD-induced microglial M1/M2 polarization by inhibiting p-STAT3 and SOCS3 expressions, which was reversed by STAT3 activator (Colivelin TFA). Finally, we verified MFG-E8 alleviated OGD-induced neuronal cell apoptosis by M2 polarization of BV-2 cells.Conclusions: We demonstrated that MFG-E8 reduced neuronal cell apoptosis by enhancing activation of microglia via STAT3 signaling. Therefore, we suggested that MFG-E8 might provide a novel mechanism for ischemic stroke.
科研通智能强力驱动
Strongly Powered by AbleSci AI