清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Optimal Construction of Koopman Eigenfunctions for Prediction and Control

本征函数 线性子空间 数学 应用数学 操作员(生物学) 线性系统 线性地图 数学优化 计算机科学 特征向量 数学分析 纯数学 物理 基因 转录因子 抑制因子 量子力学 化学 生物化学
作者
Milan Korda,Igor Mezić
出处
期刊:IEEE Transactions on Automatic Control [Institute of Electrical and Electronics Engineers]
卷期号:65 (12): 5114-5129 被引量:91
标识
DOI:10.1109/tac.2020.2978039
摘要

This article presents a novel data-driven framework for constructing eigenfunctions of the Koopman operator geared toward prediction and control. The method leverages the richness of the spectrum of the Koopman operator away from attractors to construct a set of eigenfunctions such that the state (or any other observable quantity of interest) is in the span of these eigenfunctions and hence predictable in a linear fashion. The eigenfunction construction is optimization-based with no dictionary selection required. Once a predictor for the uncontrolled part of the system is obtained in this way, the incorporation of control is done through a multistep prediction error minimization, carried out by a simple linear least-squares regression. The predictor so obtained is in the form of a linear controlled dynamical system and can be readily applied within the Koopman model predictive control (MPC) framework of (M. Korda and I. Mezić, 2018) to control nonlinear dynamical systems using linear MPC tools. The method is entirely data-driven and based predominantly on convex optimization. The novel eigenfunction construction method is also analyzed theoretically, proving rigorously that the family of eigenfunctions obtained is rich enough to span the space of all continuous functions. In addition, the method is extended to construct generalized eigenfunctions that also give rise Koopman invariant subspaces and hence can be used for linear prediction. Detailed numerical examples demonstrate the approach, both for prediction and feedback control. ** Code for the numerical examples is available from https://homepages.laas.fr/mkorda/Eigfuns.zip.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桥西小河完成签到 ,获得积分10
11秒前
shhoing应助科研通管家采纳,获得10
13秒前
yishan发布了新的文献求助10
16秒前
QCB完成签到 ,获得积分10
1分钟前
af完成签到,获得积分10
1分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
2分钟前
科研狗的春天完成签到 ,获得积分10
2分钟前
李玉兰完成签到 ,获得积分10
3分钟前
regene完成签到,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
曾予嘉完成签到 ,获得积分10
4分钟前
mmyhn发布了新的文献求助10
4分钟前
zhengliumd发布了新的文献求助10
5分钟前
zzgpku完成签到,获得积分0
5分钟前
苗条白枫完成签到 ,获得积分10
5分钟前
chichenglin完成签到 ,获得积分0
5分钟前
5分钟前
PeterLin完成签到,获得积分10
5分钟前
施光玲44931完成签到 ,获得积分10
5分钟前
搜集达人应助科研通管家采纳,获得10
6分钟前
shhoing应助科研通管家采纳,获得10
6分钟前
yishan完成签到,获得积分10
6分钟前
Yuki完成签到 ,获得积分10
6分钟前
愤怒的念蕾完成签到,获得积分10
6分钟前
科研通AI2S应助大熊采纳,获得10
7分钟前
mmyhn发布了新的文献求助10
7分钟前
刘刘完成签到 ,获得积分10
8分钟前
shhoing应助科研通管家采纳,获得10
8分钟前
LeoBigman完成签到 ,获得积分10
9分钟前
裴雅柔完成签到,获得积分10
9分钟前
桐桐应助HHM采纳,获得10
9分钟前
曲少完成签到,获得积分10
9分钟前
爆米花应助HHM采纳,获得10
9分钟前
机灵的以筠完成签到 ,获得积分10
9分钟前
科研通AI2S应助科研通管家采纳,获得10
10分钟前
shhoing应助科研通管家采纳,获得10
10分钟前
nav完成签到 ,获得积分10
10分钟前
10分钟前
jlwang完成签到,获得积分10
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561636
求助须知:如何正确求助?哪些是违规求助? 4646720
关于积分的说明 14678871
捐赠科研通 4588069
什么是DOI,文献DOI怎么找? 2517292
邀请新用户注册赠送积分活动 1490598
关于科研通互助平台的介绍 1461671