Mask R-CNN-Based Detection and Segmentation for Pulmonary Nodule 3D Visualization Diagnosis

计算机科学 卷积神经网络 人工智能 可视化 模式识别(心理学) 假阳性悖论 分割 渲染(计算机图形) 特征(语言学) 体绘制 特征提取 深度学习 图像分割 计算机视觉 哲学 语言学
作者
Linqin Cai,Tao Long,Yuhan Dai,Yuting Huang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 44400-44409 被引量:80
标识
DOI:10.1109/access.2020.2976432
摘要

3D visualization diagnosis for pulmonary nodule detection and segmentation is becoming a promising topic in the field of surgical researches and applications.Aiming at assisting radiologists to diagnose pulmonary nodules more accurately, the methods of detection and segmentation for pulmonary nodule 3D visualization diagnosis were proposed based on Mask Region-Convolutional Neural Network (Mask R-CNN) and ray-casting volume rendering algorithm.The Mask R-CNN used resnet50 as the backbone and applied Feature Pyramid Network (FPN) to fully explore multiscale feature maps.And then, Region Proposal Network (RPN) was used to propose candidate bounding boxes.Furthermore, the mask matrices and the raw medical image sequences were multiplied to obtain sequences of predicted pulmonary nodules.Finally, ray-casting volume rendering algorithm was applied to generate the 3D models of pulmonary nodules.The proposed methods are tested and evaluated on publicly available LUNA16 dataset and the independent dataset from Ali TianChi challenge.Experimental results show that Mask R-CNN of weighted loss reaches sensitivities of 88.1% and 88.7% at 1 and 4 false positives per scan, respectively.Meanwhile, we can obtain AP@50 score of 0.882 using Mask R-CNN with weighted loss on labelme_LUNA16 dataset, which outperforms many existing state-of-the-art approaches of detection and segmentation of pulmonary nodules.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
M123完成签到,获得积分10
刚刚
英俊雅琴完成签到,获得积分20
刚刚
刚刚
小白发布了新的文献求助10
刚刚
斯文败类应助13而非大V采纳,获得10
刚刚
1秒前
2秒前
Chenst完成签到,获得积分10
2秒前
2秒前
零零零零发布了新的文献求助10
2秒前
2秒前
谢昊宸发布了新的文献求助10
2秒前
英俊雅琴发布了新的文献求助10
2秒前
赘婿应助WenwenBian采纳,获得10
3秒前
追风完成签到,获得积分10
3秒前
3秒前
4秒前
洁净的元蝶完成签到,获得积分20
4秒前
量子星尘发布了新的文献求助10
5秒前
CodeCraft应助Grinde采纳,获得10
5秒前
5秒前
hu123发布了新的文献求助10
6秒前
6秒前
6秒前
长孙文博发布了新的文献求助10
7秒前
天天快乐应助英俊雅琴采纳,获得10
7秒前
墨羽完成签到,获得积分10
8秒前
YKK发布了新的文献求助10
8秒前
Chenst发布了新的文献求助10
9秒前
五颜六色的白完成签到,获得积分10
9秒前
9秒前
zyl发布了新的文献求助10
11秒前
丰富靖琪完成签到 ,获得积分10
12秒前
bkagyin应助Lorain采纳,获得10
12秒前
勤奋一一发布了新的文献求助10
14秒前
在水一方应助研友_08ozgZ采纳,获得10
14秒前
14秒前
爆米花应助may采纳,获得50
14秒前
badada完成签到,获得积分10
15秒前
会谢发布了新的文献求助30
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5709365
求助须知:如何正确求助?哪些是违规求助? 5194399
关于积分的说明 15256725
捐赠科研通 4862173
什么是DOI,文献DOI怎么找? 2609877
邀请新用户注册赠送积分活动 1560325
关于科研通互助平台的介绍 1518044