LDGRNMF: LncRNA-disease associations prediction based on graph regularized non-negative matrix factorization

邻接矩阵 计算机科学 非负矩阵分解 疾病 矩阵分解 图形 语义相似性 核(代数) 人工智能 模式识别(心理学) 计算生物学 理论计算机科学 数学 生物 特征向量 医学 物理 量子力学 病理 组合数学
作者
Mei-Neng Wang,Zhu‐Hong You,Lei Wang,Liping Li,Kai Zheng
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:424: 236-245 被引量:61
标识
DOI:10.1016/j.neucom.2020.02.062
摘要

Emerging evidence suggests that long non-coding RNAs (lncRNAs) play an important role in various biological processes and human diseases. Exploring the associations between lncRNAs and diseases can better understand the complex disease mechanisms. However, expensive and time-consuming for exploring by biological experiments, it is imperative to develop more accurate and efficient computational approaches to predicting lncRNA-disease associations. In this work, we develop a new computational approach to predict lncRNA-disease associations using graph regularized nonnegative matrix factorization (LDGRNMF), which considers disease-associated lncRNAs identification as recommendation system problem. More specifically, we calculate the similarity of disease based on Gaussian interaction profile kernel and disease semantic information, and calculate the similarity of lncRNA based on Gaussian interaction profile kernel. Secondly, the weighted K nearest known neighbor interaction profiles is applied to reconstruct lncRNA-disease association adjacency matrix. Finally, graph regularized nonnegative matrix factorization is exploited to predict the potential associations between lncRNAs and diseases. In the five-fold cross-validation experiments, LDGRNMF achieves AUC of 0.8985 which outperforms other compared methods. Moreover, in case studies for stomach cancer, breast cancer and lung cancer, 9, 8 and 6 of the top 10 candidate lncRNAs predicted by LDGRNMF are verified, respectively. Rigorous experimental results indicate that our method can be regarded as an effectively tool for predicting potential lncRNA-disease associations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研狗发布了新的文献求助10
2秒前
2秒前
EVE完成签到,获得积分10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
3秒前
凉薄少年应助科研通管家采纳,获得20
4秒前
Owen应助科研通管家采纳,获得10
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
凉薄少年应助科研通管家采纳,获得20
4秒前
Owen应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
qq完成签到,获得积分10
4秒前
cyhhhhhhhh完成签到,获得积分10
6秒前
bkagyin应助要发science采纳,获得10
6秒前
6秒前
7秒前
7秒前
8秒前
无情帆布鞋完成签到,获得积分10
8秒前
SYLH应助lcxszsd采纳,获得10
9秒前
彳亍1117发布了新的文献求助100
9秒前
demo完成签到,获得积分10
9秒前
xu发布了新的文献求助10
9秒前
cyhhhhhhhh发布了新的文献求助50
10秒前
十一发布了新的文献求助10
10秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
Hey发布了新的文献求助10
12秒前
17秒前
男研选手完成签到,获得积分10
17秒前
wulalala发布了新的文献求助10
18秒前
乐乐应助陈成采纳,获得10
18秒前
高分求助中
A Comprehensive Review on the Chemical Composition, Pharmacology and Clinical Applications of Ganoderma 3000
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956215
求助须知:如何正确求助?哪些是违规求助? 3502433
关于积分的说明 11107557
捐赠科研通 3233009
什么是DOI,文献DOI怎么找? 1787120
邀请新用户注册赠送积分活动 870498
科研通“疑难数据库(出版商)”最低求助积分说明 802032