亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

LDGRNMF: LncRNA-disease associations prediction based on graph regularized non-negative matrix factorization

邻接矩阵 计算机科学 非负矩阵分解 疾病 矩阵分解 图形 语义相似性 核(代数) 人工智能 模式识别(心理学) 计算生物学 理论计算机科学 数学 生物 特征向量 医学 物理 量子力学 病理 组合数学
作者
Mei-Neng Wang,Zhu‐Hong You,Lei Wang,Liping Li,Kai Zheng
出处
期刊:Neurocomputing [Elsevier]
卷期号:424: 236-245 被引量:61
标识
DOI:10.1016/j.neucom.2020.02.062
摘要

Emerging evidence suggests that long non-coding RNAs (lncRNAs) play an important role in various biological processes and human diseases. Exploring the associations between lncRNAs and diseases can better understand the complex disease mechanisms. However, expensive and time-consuming for exploring by biological experiments, it is imperative to develop more accurate and efficient computational approaches to predicting lncRNA-disease associations. In this work, we develop a new computational approach to predict lncRNA-disease associations using graph regularized nonnegative matrix factorization (LDGRNMF), which considers disease-associated lncRNAs identification as recommendation system problem. More specifically, we calculate the similarity of disease based on Gaussian interaction profile kernel and disease semantic information, and calculate the similarity of lncRNA based on Gaussian interaction profile kernel. Secondly, the weighted K nearest known neighbor interaction profiles is applied to reconstruct lncRNA-disease association adjacency matrix. Finally, graph regularized nonnegative matrix factorization is exploited to predict the potential associations between lncRNAs and diseases. In the five-fold cross-validation experiments, LDGRNMF achieves AUC of 0.8985 which outperforms other compared methods. Moreover, in case studies for stomach cancer, breast cancer and lung cancer, 9, 8 and 6 of the top 10 candidate lncRNAs predicted by LDGRNMF are verified, respectively. Rigorous experimental results indicate that our method can be regarded as an effectively tool for predicting potential lncRNA-disease associations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
迷路千琴发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
10秒前
13秒前
tlx发布了新的文献求助10
17秒前
xmg完成签到,获得积分20
21秒前
共享精神应助一周采纳,获得10
21秒前
22秒前
科研通AI6应助科研通管家采纳,获得10
24秒前
研友_VZG7GZ应助科研通管家采纳,获得10
24秒前
gexzygg应助科研通管家采纳,获得10
24秒前
shhoing应助科研通管家采纳,获得10
24秒前
24秒前
qpp完成签到,获得积分10
24秒前
beiwei完成签到 ,获得积分10
26秒前
26秒前
葡萄发布了新的文献求助10
30秒前
35秒前
情怀应助tlx采纳,获得30
38秒前
小蘑菇应助Qiaoguliang采纳,获得10
38秒前
38秒前
43秒前
葡萄完成签到,获得积分10
44秒前
bgim发布了新的文献求助10
47秒前
54秒前
56秒前
56秒前
一周发布了新的文献求助10
59秒前
59秒前
Qiaoguliang发布了新的文献求助10
1分钟前
1分钟前
lyb1853关注了科研通微信公众号
1分钟前
波恰发布了新的文献求助10
1分钟前
飞快的孱发布了新的文献求助10
1分钟前
1分钟前
三三完成签到 ,获得积分0
1分钟前
1分钟前
horizon发布了新的文献求助10
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5549098
求助须知:如何正确求助?哪些是违规求助? 4634430
关于积分的说明 14634667
捐赠科研通 4575878
什么是DOI,文献DOI怎么找? 2509325
邀请新用户注册赠送积分活动 1485283
关于科研通互助平台的介绍 1456402