Deep learning model for the prediction of microsatellite instability in colorectal cancer: a diagnostic study

医学 微卫星不稳定性 结直肠癌 不稳定性 人工智能 深度学习 内科学 癌症 肿瘤科 微卫星 计算机科学 物理 生物 遗传学 等位基因 基因 机械
作者
Rikiya Yamashita,Jin Long,Teri A. Longacre,Lan Peng,Gerald J. Berry,Brock A. Martin,Julian P. T. Higgins,Daniel L. Rubin,Jeanne Shen
出处
期刊:Lancet Oncology [Elsevier]
卷期号:22 (1): 132-141 被引量:340
标识
DOI:10.1016/s1470-2045(20)30535-0
摘要

Summary

Background

Detecting microsatellite instability (MSI) in colorectal cancer is crucial for clinical decision making, as it identifies patients with differential treatment response and prognosis. Universal MSI testing is recommended, but many patients remain untested. A critical need exists for broadly accessible, cost-efficient tools to aid patient selection for testing. Here, we investigate the potential of a deep learning-based system for automated MSI prediction directly from haematoxylin and eosin (H&E)-stained whole-slide images (WSIs).

Methods

Our deep learning model (MSINet) was developed using 100 H&E-stained WSIs (50 with microsatellite stability [MSS] and 50 with MSI) scanned at 40× magnification, each from a patient randomly selected in a class-balanced manner from the pool of 343 patients who underwent primary colorectal cancer resection at Stanford University Medical Center (Stanford, CA, USA; internal dataset) between Jan 1, 2015, and Dec 31, 2017. We internally validated the model on a holdout test set (15 H&E-stained WSIs from 15 patients; seven cases with MSS and eight with MSI) and externally validated the model on 484 H&E-stained WSIs (402 cases with MSS and 77 with MSI; 479 patients) from The Cancer Genome Atlas, containing WSIs scanned at 40× and 20× magnification. Performance was primarily evaluated using the sensitivity, specificity, negative predictive value (NPV), and area under the receiver operating characteristic curve (AUROC). We compared the model's performance with that of five gastrointestinal pathologists on a class-balanced, randomly selected subset of 40× magnification WSIs from the external dataset (20 with MSS and 20 with MSI).

Findings

The MSINet model achieved an AUROC of 0·931 (95% CI 0·771–1·000) on the holdout test set from the internal dataset and 0·779 (0·720–0·838) on the external dataset. On the external dataset, using a sensitivity-weighted operating point, the model achieved an NPV of 93·7% (95% CI 90·3–96·2), sensitivity of 76·0% (64·8–85·1), and specificity of 66·6% (61·8–71·2). On the reader experiment (40 cases), the model achieved an AUROC of 0·865 (95% CI 0·735–0·995). The mean AUROC performance of the five pathologists was 0·605 (95% CI 0·453–0·757).

Interpretation

Our deep learning model exceeded the performance of experienced gastrointestinal pathologists at predicting MSI on H&E-stained WSIs. Within the current universal MSI testing paradigm, such a model might contribute value as an automated screening tool to triage patients for confirmatory testing, potentially reducing the number of tested patients, thereby resulting in substantial test-related labour and cost savings.

Funding

Stanford Cancer Institute and Stanford Departments of Pathology and Biomedical Data Science.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Hello应助当下最好采纳,获得10
刚刚
HMONEY完成签到,获得积分10
1秒前
1秒前
2秒前
太阳完成签到,获得积分10
2秒前
SciGPT应助小语丝采纳,获得10
3秒前
TONG发布了新的文献求助10
3秒前
3秒前
4秒前
5秒前
画凌烟发布了新的文献求助10
6秒前
ab完成签到,获得积分10
6秒前
爆米花应助闪闪明轩采纳,获得10
7秒前
笨笨米卡完成签到,获得积分10
7秒前
HSDSD发布了新的文献求助10
8秒前
8秒前
xl发布了新的文献求助30
9秒前
curryand完成签到 ,获得积分20
9秒前
不知似若发布了新的文献求助10
10秒前
极意发布了新的文献求助10
11秒前
lk发布了新的文献求助10
11秒前
11秒前
xtz发布了新的文献求助30
13秒前
慕青应助白华苍松采纳,获得10
13秒前
大模型应助kong采纳,获得10
13秒前
当下最好发布了新的文献求助10
13秒前
斯文败类应助HSDSD采纳,获得10
14秒前
慕青应助爱学习的小张采纳,获得10
14秒前
情怀应助高xy采纳,获得10
14秒前
15秒前
画凌烟完成签到,获得积分20
15秒前
丘比特应助吕凯迪采纳,获得10
16秒前
FFGC发布了新的文献求助10
16秒前
慕青应助蘇尼Ai采纳,获得10
17秒前
18秒前
量子星尘发布了新的文献求助10
18秒前
18秒前
zhou完成签到,获得积分10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684488
求助须知:如何正确求助?哪些是违规求助? 5036727
关于积分的说明 15184287
捐赠科研通 4843754
什么是DOI,文献DOI怎么找? 2596869
邀请新用户注册赠送积分活动 1549511
关于科研通互助平台的介绍 1508027