Deep learning model for the prediction of microsatellite instability in colorectal cancer: a diagnostic study

医学 微卫星不稳定性 结直肠癌 不稳定性 人工智能 深度学习 内科学 癌症 肿瘤科 微卫星 计算机科学 物理 生物 遗传学 等位基因 基因 机械
作者
Rikiya Yamashita,Jin Long,Teri A. Longacre,Lan Peng,Gerald J. Berry,Brock A. Martin,Julian P. T. Higgins,Daniel L. Rubin,Jeanne Shen
出处
期刊:Lancet Oncology [Elsevier]
卷期号:22 (1): 132-141 被引量:340
标识
DOI:10.1016/s1470-2045(20)30535-0
摘要

Summary

Background

Detecting microsatellite instability (MSI) in colorectal cancer is crucial for clinical decision making, as it identifies patients with differential treatment response and prognosis. Universal MSI testing is recommended, but many patients remain untested. A critical need exists for broadly accessible, cost-efficient tools to aid patient selection for testing. Here, we investigate the potential of a deep learning-based system for automated MSI prediction directly from haematoxylin and eosin (H&E)-stained whole-slide images (WSIs).

Methods

Our deep learning model (MSINet) was developed using 100 H&E-stained WSIs (50 with microsatellite stability [MSS] and 50 with MSI) scanned at 40× magnification, each from a patient randomly selected in a class-balanced manner from the pool of 343 patients who underwent primary colorectal cancer resection at Stanford University Medical Center (Stanford, CA, USA; internal dataset) between Jan 1, 2015, and Dec 31, 2017. We internally validated the model on a holdout test set (15 H&E-stained WSIs from 15 patients; seven cases with MSS and eight with MSI) and externally validated the model on 484 H&E-stained WSIs (402 cases with MSS and 77 with MSI; 479 patients) from The Cancer Genome Atlas, containing WSIs scanned at 40× and 20× magnification. Performance was primarily evaluated using the sensitivity, specificity, negative predictive value (NPV), and area under the receiver operating characteristic curve (AUROC). We compared the model's performance with that of five gastrointestinal pathologists on a class-balanced, randomly selected subset of 40× magnification WSIs from the external dataset (20 with MSS and 20 with MSI).

Findings

The MSINet model achieved an AUROC of 0·931 (95% CI 0·771–1·000) on the holdout test set from the internal dataset and 0·779 (0·720–0·838) on the external dataset. On the external dataset, using a sensitivity-weighted operating point, the model achieved an NPV of 93·7% (95% CI 90·3–96·2), sensitivity of 76·0% (64·8–85·1), and specificity of 66·6% (61·8–71·2). On the reader experiment (40 cases), the model achieved an AUROC of 0·865 (95% CI 0·735–0·995). The mean AUROC performance of the five pathologists was 0·605 (95% CI 0·453–0·757).

Interpretation

Our deep learning model exceeded the performance of experienced gastrointestinal pathologists at predicting MSI on H&E-stained WSIs. Within the current universal MSI testing paradigm, such a model might contribute value as an automated screening tool to triage patients for confirmatory testing, potentially reducing the number of tested patients, thereby resulting in substantial test-related labour and cost savings.

Funding

Stanford Cancer Institute and Stanford Departments of Pathology and Biomedical Data Science.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
河南萌神发布了新的文献求助10
刚刚
lilyimurarea完成签到,获得积分20
刚刚
fmwang完成签到,获得积分10
1秒前
1秒前
2秒前
dangdang发布了新的文献求助10
3秒前
3秒前
活泼听双发布了新的文献求助20
3秒前
3秒前
4秒前
核潜艇很优秀应助嘻嘻采纳,获得30
4秒前
大勺完成签到 ,获得积分10
5秒前
明理的凡霜完成签到,获得积分10
5秒前
sqb完成签到,获得积分10
6秒前
曾经曼梅发布了新的文献求助10
6秒前
6秒前
无极微光应助瘦瘦采纳,获得20
6秒前
连长发布了新的文献求助10
6秒前
Pooh发布了新的文献求助10
6秒前
LYDZ2发布了新的文献求助10
6秒前
7秒前
7秒前
啊棕完成签到,获得积分10
8秒前
SciGPT应助Ttttt采纳,获得10
8秒前
9秒前
dudu完成签到,获得积分10
10秒前
11秒前
无极微光应助婷123采纳,获得20
12秒前
12秒前
多情的奄完成签到,获得积分10
12秒前
情怀应助小乙大夫采纳,获得10
12秒前
Jinnnnn发布了新的文献求助10
12秒前
满天星完成签到,获得积分10
13秒前
TingtingGZ发布了新的文献求助10
14秒前
清河聂氏发布了新的文献求助10
14秒前
pluto应助曾经曼梅采纳,获得10
14秒前
15秒前
丘比特应助自由的尔蓉采纳,获得10
15秒前
孙子豪完成签到,获得积分10
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667160
求助须知:如何正确求助?哪些是违规求助? 4884250
关于积分的说明 15118778
捐赠科研通 4826049
什么是DOI,文献DOI怎么找? 2583692
邀请新用户注册赠送积分活动 1537843
关于科研通互助平台的介绍 1496006