Deep learning model for the prediction of microsatellite instability in colorectal cancer: a diagnostic study

医学 微卫星不稳定性 结直肠癌 不稳定性 人工智能 深度学习 内科学 癌症 肿瘤科 微卫星 计算机科学 物理 生物 遗传学 等位基因 基因 机械
作者
Rikiya Yamashita,Jin Long,Teri A. Longacre,Lan Peng,Gerald J. Berry,Brock A. Martin,Julian P. T. Higgins,Daniel L. Rubin,Jeanne Shen
出处
期刊:Lancet Oncology [Elsevier BV]
卷期号:22 (1): 132-141 被引量:321
标识
DOI:10.1016/s1470-2045(20)30535-0
摘要

Summary

Background

Detecting microsatellite instability (MSI) in colorectal cancer is crucial for clinical decision making, as it identifies patients with differential treatment response and prognosis. Universal MSI testing is recommended, but many patients remain untested. A critical need exists for broadly accessible, cost-efficient tools to aid patient selection for testing. Here, we investigate the potential of a deep learning-based system for automated MSI prediction directly from haematoxylin and eosin (H&E)-stained whole-slide images (WSIs).

Methods

Our deep learning model (MSINet) was developed using 100 H&E-stained WSIs (50 with microsatellite stability [MSS] and 50 with MSI) scanned at 40× magnification, each from a patient randomly selected in a class-balanced manner from the pool of 343 patients who underwent primary colorectal cancer resection at Stanford University Medical Center (Stanford, CA, USA; internal dataset) between Jan 1, 2015, and Dec 31, 2017. We internally validated the model on a holdout test set (15 H&E-stained WSIs from 15 patients; seven cases with MSS and eight with MSI) and externally validated the model on 484 H&E-stained WSIs (402 cases with MSS and 77 with MSI; 479 patients) from The Cancer Genome Atlas, containing WSIs scanned at 40× and 20× magnification. Performance was primarily evaluated using the sensitivity, specificity, negative predictive value (NPV), and area under the receiver operating characteristic curve (AUROC). We compared the model's performance with that of five gastrointestinal pathologists on a class-balanced, randomly selected subset of 40× magnification WSIs from the external dataset (20 with MSS and 20 with MSI).

Findings

The MSINet model achieved an AUROC of 0·931 (95% CI 0·771–1·000) on the holdout test set from the internal dataset and 0·779 (0·720–0·838) on the external dataset. On the external dataset, using a sensitivity-weighted operating point, the model achieved an NPV of 93·7% (95% CI 90·3–96·2), sensitivity of 76·0% (64·8–85·1), and specificity of 66·6% (61·8–71·2). On the reader experiment (40 cases), the model achieved an AUROC of 0·865 (95% CI 0·735–0·995). The mean AUROC performance of the five pathologists was 0·605 (95% CI 0·453–0·757).

Interpretation

Our deep learning model exceeded the performance of experienced gastrointestinal pathologists at predicting MSI on H&E-stained WSIs. Within the current universal MSI testing paradigm, such a model might contribute value as an automated screening tool to triage patients for confirmatory testing, potentially reducing the number of tested patients, thereby resulting in substantial test-related labour and cost savings.

Funding

Stanford Cancer Institute and Stanford Departments of Pathology and Biomedical Data Science.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
义气凡霜完成签到,获得积分10
1秒前
2秒前
liliya发布了新的文献求助30
2秒前
隐形曼青应助大E深空采纳,获得30
3秒前
大模型应助苗苗采纳,获得10
3秒前
4秒前
小个白完成签到,获得积分10
4秒前
L756561205发布了新的文献求助10
4秒前
Qinferl发布了新的文献求助10
4秒前
5秒前
hsss完成签到,获得积分10
5秒前
5秒前
网页发布了新的文献求助10
6秒前
科研通AI6应助control采纳,获得10
6秒前
6秒前
6秒前
称心曼安应助欣慰巨人采纳,获得10
6秒前
dudu发布了新的文献求助10
7秒前
anheshu完成签到 ,获得积分10
7秒前
Hin66完成签到,获得积分10
7秒前
赵寒迟发布了新的文献求助10
8秒前
8秒前
8秒前
hatim发布了新的文献求助10
9秒前
Gulu_发布了新的文献求助10
9秒前
田様应助玉米侠采纳,获得10
9秒前
9秒前
9秒前
RNNNLL应助1111采纳,获得20
10秒前
10秒前
yummy完成签到 ,获得积分10
11秒前
迷路夜南完成签到,获得积分10
11秒前
汉堡包应助小心爱吃肉采纳,获得10
11秒前
1026918发布了新的文献求助10
11秒前
12秒前
慕青应助小城故事和冰雨采纳,获得10
12秒前
深情安青应助葡萄成熟时采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5072388
求助须知:如何正确求助?哪些是违规求助? 4292768
关于积分的说明 13375916
捐赠科研通 4113855
什么是DOI,文献DOI怎么找? 2252710
邀请新用户注册赠送积分活动 1257518
关于科研通互助平台的介绍 1190266