Patent infringement analysis using a text mining technique based on SAO structure

专利侵权 专利可视化 产品(数学) 过程(计算) 计算机科学 专利分析 对象(语法) 主题(文档) 动作(物理) 业务 数据科学 万维网 知识产权 人工智能 量子力学 物理 几何学 数学 操作系统
作者
Sunhye Kim,Byungun Yoon
出处
期刊:Computers in Industry [Elsevier]
卷期号:125: 103379-103379 被引量:33
标识
DOI:10.1016/j.compind.2020.103379
摘要

• This paper aims to develop an automated approach for patent infringement using SAO-based text mining technique. • The proposed approach can focus on the functions of technology in patent documents and product documents. • This paper utilizes vectors of the SAO structures derived from the patent documents using the Doc2Vec-based SAO2Vec. • This paper found that the proposed indicators were statistically significant to judge the patent infringement. As can be seen in the emergence of non-practicing entities, patent infringement lawsuits are very significant events for companies, both financially and technologically. Thus, the importance of patent infringement analysis has been emphasized to support a decision-making process of potential stakeholders. Since identifying patent infringement needs to consider various factors, the most appropriate method is to review the expert analysis in each case. However, as the size of valuable data continues to grow in recent years, the need for automated quantitative analysis that enables to perform such processes without experts has increased. Thus, this research aims to develop an automated approach for patent infringement using Subject-Action-Object structure-based text mining technique and SAO2Vec, which focus on the functions of technology in patent documents and product documents. The proposed framework consists of three modules. In the first module, the types of companies in which patent infringement can occur are defined, and then lists of companies selected by various databases are identified. In the second module, vectors of the SAO structures are derived from the patent documents of the selected company using the Doc2Vec-based SAO2Vec. In the last module, the results of the first and second modules are used to calculate the patent infringement indicators. To validate the suggested approach, we applied it to the case of Nintendo, which had recently become an issue in patent infringement lawsuits. We found that the proposed indicators were a statistically good indicator to judge the patent infringement, identifying the pairs of patents that have a high possibility of patent infringement.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助Epiphany采纳,获得10
刚刚
刘旭环完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
酷波er应助程小明采纳,获得10
1秒前
东郭以云发布了新的文献求助10
1秒前
田様应助wujiwuhui采纳,获得10
2秒前
小晓俊发布了新的文献求助10
2秒前
研友_VZG7GZ应助yyt采纳,获得10
3秒前
栗子发布了新的文献求助10
3秒前
李大橘完成签到,获得积分10
3秒前
正直芒果发布了新的文献求助10
3秒前
科研通AI6应助芒go采纳,获得10
3秒前
chens627发布了新的文献求助10
3秒前
Ava应助外向梦山采纳,获得10
4秒前
4秒前
桐桐应助hoyihoyi采纳,获得10
4秒前
Judy发布了新的文献求助10
5秒前
5秒前
清爽外绣发布了新的文献求助10
6秒前
星辰大海应助憨憨小黄采纳,获得10
6秒前
wwt发布了新的文献求助10
6秒前
6秒前
万能图书馆应助dengy采纳,获得10
7秒前
8秒前
8秒前
zmj应助生活不是电影采纳,获得10
8秒前
霸气豆芽完成签到 ,获得积分10
8秒前
9秒前
烟花应助Shylie采纳,获得10
9秒前
chens627完成签到,获得积分10
9秒前
111完成签到,获得积分10
9秒前
CipherSage应助流浪野王采纳,获得10
9秒前
10秒前
赘婿应助嗣音采纳,获得10
10秒前
10秒前
小晓俊完成签到,获得积分10
10秒前
我是老大应助windcreator采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532190
求助须知:如何正确求助?哪些是违规求助? 4620957
关于积分的说明 14575781
捐赠科研通 4560709
什么是DOI,文献DOI怎么找? 2498949
邀请新用户注册赠送积分活动 1478927
关于科研通互助平台的介绍 1450190