Patent infringement analysis using a text mining technique based on SAO structure

专利侵权 专利可视化 产品(数学) 过程(计算) 计算机科学 专利分析 对象(语法) 主题(文档) 动作(物理) 业务 数据科学 万维网 知识产权 人工智能 量子力学 物理 几何学 数学 操作系统
作者
Sunhye Kim,Byungun Yoon
出处
期刊:Computers in Industry [Elsevier]
卷期号:125: 103379-103379 被引量:33
标识
DOI:10.1016/j.compind.2020.103379
摘要

• This paper aims to develop an automated approach for patent infringement using SAO-based text mining technique. • The proposed approach can focus on the functions of technology in patent documents and product documents. • This paper utilizes vectors of the SAO structures derived from the patent documents using the Doc2Vec-based SAO2Vec. • This paper found that the proposed indicators were statistically significant to judge the patent infringement. As can be seen in the emergence of non-practicing entities, patent infringement lawsuits are very significant events for companies, both financially and technologically. Thus, the importance of patent infringement analysis has been emphasized to support a decision-making process of potential stakeholders. Since identifying patent infringement needs to consider various factors, the most appropriate method is to review the expert analysis in each case. However, as the size of valuable data continues to grow in recent years, the need for automated quantitative analysis that enables to perform such processes without experts has increased. Thus, this research aims to develop an automated approach for patent infringement using Subject-Action-Object structure-based text mining technique and SAO2Vec, which focus on the functions of technology in patent documents and product documents. The proposed framework consists of three modules. In the first module, the types of companies in which patent infringement can occur are defined, and then lists of companies selected by various databases are identified. In the second module, vectors of the SAO structures are derived from the patent documents of the selected company using the Doc2Vec-based SAO2Vec. In the last module, the results of the first and second modules are used to calculate the patent infringement indicators. To validate the suggested approach, we applied it to the case of Nintendo, which had recently become an issue in patent infringement lawsuits. We found that the proposed indicators were a statistically good indicator to judge the patent infringement, identifying the pairs of patents that have a high possibility of patent infringement.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星期五应助科研通管家采纳,获得10
4秒前
Xiaoxiao应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
Orange应助科研通管家采纳,获得10
4秒前
Wind应助wwl采纳,获得10
6秒前
科研通AI2S应助单薄映易采纳,获得10
6秒前
8秒前
甜屁儿完成签到 ,获得积分10
8秒前
ECHO完成签到,获得积分10
9秒前
anz完成签到 ,获得积分10
9秒前
LIJIngcan完成签到 ,获得积分10
11秒前
黎黎原上草完成签到,获得积分10
13秒前
水云发布了新的文献求助10
14秒前
迷路绮南完成签到 ,获得积分10
15秒前
dingtao发布了新的文献求助80
16秒前
又又完成签到 ,获得积分10
17秒前
yinyin完成签到 ,获得积分10
19秒前
王旭东完成签到 ,获得积分10
20秒前
南风完成签到 ,获得积分10
20秒前
splemeth完成签到,获得积分10
21秒前
无私的电灯胆完成签到,获得积分10
24秒前
朱朱完成签到 ,获得积分10
24秒前
ll完成签到 ,获得积分10
24秒前
坚强的铅笔完成签到 ,获得积分10
25秒前
資鼒完成签到 ,获得积分10
26秒前
。。完成签到 ,获得积分10
28秒前
sunnyqqz完成签到,获得积分10
29秒前
量子星尘发布了新的文献求助10
29秒前
宜菏发布了新的文献求助10
29秒前
29秒前
吉以寒完成签到,获得积分10
36秒前
Gu0F1完成签到 ,获得积分10
37秒前
花卷完成签到,获得积分10
37秒前
37秒前
董老师完成签到 ,获得积分10
41秒前
123发布了新的文献求助10
43秒前
Rainlistener完成签到,获得积分10
44秒前
45秒前
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599922
求助须知:如何正确求助?哪些是违规求助? 4685747
关于积分的说明 14838974
捐赠科研通 4674097
什么是DOI,文献DOI怎么找? 2538431
邀请新用户注册赠送积分活动 1505597
关于科研通互助平台的介绍 1471086