Infiltration of Metal Catalysts for NH3 Synthesis in Protonic Ceramic Cells

催化作用 材料科学 化学工程 电化学 电解质 可逆氢电极 电极 制氢 标准氢电极 石墨 阴极 烧结 电解 工作电极 复合材料 化学 有机化学 物理化学 工程类
作者
Julian Dailly,Daniel Schmider
出处
期刊:Meeting abstracts 卷期号:MA2020-02 (40): 2633-2633
标识
DOI:10.1149/ma2020-02402633mtgabs
摘要

The electrochemical synthesis of green NH 3 representes a promising alternative to the conventional Haber-Bosch process, which currently relies on H 2 mainly sourced from fossil fuels. Additionally, it compensates for the thermodynamic limitations of the ammonia synthesis reaction via the utilization of high pressures of 150-300 bar, resulting in high energy consumption. The prospect of solid state ammonia synthesis (SSAS) in proton conducting electrolysis cells (PCEC) has been the subject of increased interest recently [1]. It features steam in place of H 2 as a reactant and the electrochemical activation of N 2 at the hydrogen electrode (cathode) through the use of a catalyst. Possible candidates are metallic Ru or Fe, analogous to the thermocatalytic Haber-Bosch process. The implementation of the catalyst in the electrochemical cell is critical to the performance of the system. In order to augment the kinetics, high amounts of catalyst near the electrode-electrolyte interface are desired. Therefore, the microstructure of the electrode is of primary interest, as the void fraction of the layer must be large enough to enable a well-distributed deposition of catalyst particles. This may be achieved via the use of a pore-former, e.g. graphite powder, in the wet-route elaboration of the hydrogen electrode (see Fig. 1). However, modifications must not decrease the mechanical properties of the layer. The effect of various parameters (sintering conditions, thickness of the electrode layer, effect of additives to enhance wettability) on the final electrode structure were investigated, as well as the influence of the infiltration protocol (evacuation time, number of infiltration steps, drying procedure). The findings along with preliminary electrochemical characterizations will be discussed. [1] V. Kyriakou, I. Garagounis, E. Vasileiou, A. Vourros, M. Stoukides, Progress in the Electrochemical Synthesis of Ammonia, Catalysis Today, 286 (2017) 2-13. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ljw完成签到,获得积分10
刚刚
刘66666发布了新的文献求助10
刚刚
刚刚
婧年发布了新的文献求助10
刚刚
刚刚
Solitude_Z完成签到,获得积分10
1秒前
WW发布了新的文献求助10
1秒前
忧郁的沁发布了新的文献求助10
2秒前
2秒前
Yu发布了新的文献求助10
2秒前
哈哈完成签到,获得积分20
3秒前
愉快晟睿发布了新的文献求助10
3秒前
xiaochaoge发布了新的文献求助10
4秒前
善良傲晴完成签到,获得积分10
4秒前
Iloveyou发布了新的文献求助10
4秒前
Zzy完成签到,获得积分10
4秒前
我是老大应助XXGG采纳,获得10
4秒前
4秒前
我球呢完成签到,获得积分10
5秒前
5秒前
斯文败类应助ldkshifo采纳,获得30
6秒前
6秒前
6秒前
CodeCraft应助Fury采纳,获得10
6秒前
食杂砸发布了新的文献求助10
6秒前
SciGPT应助Yu采纳,获得10
6秒前
丘比特应助王小玉玉采纳,获得10
6秒前
xuo关注了科研通微信公众号
7秒前
俏皮的松鼠完成签到,获得积分10
7秒前
7秒前
君莫笑完成签到 ,获得积分10
8秒前
8秒前
8秒前
科研通AI2S应助xiaochaoge采纳,获得10
8秒前
领导范儿应助ww417采纳,获得10
9秒前
赵世鹏完成签到,获得积分10
9秒前
充电宝应助Xzj采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647375
求助须知:如何正确求助?哪些是违规求助? 4773416
关于积分的说明 15039107
捐赠科研通 4806115
什么是DOI,文献DOI怎么找? 2570108
邀请新用户注册赠送积分活动 1526968
关于科研通互助平台的介绍 1486055