Infiltration of Metal Catalysts for NH3 Synthesis in Protonic Ceramic Cells

催化作用 材料科学 化学工程 电化学 电解质 可逆氢电极 电极 制氢 标准氢电极 石墨 阴极 烧结 电解 工作电极 复合材料 化学 有机化学 物理化学 工程类
作者
Julian Dailly,Daniel Schmider
出处
期刊:Meeting abstracts 卷期号:MA2020-02 (40): 2633-2633
标识
DOI:10.1149/ma2020-02402633mtgabs
摘要

The electrochemical synthesis of green NH 3 representes a promising alternative to the conventional Haber-Bosch process, which currently relies on H 2 mainly sourced from fossil fuels. Additionally, it compensates for the thermodynamic limitations of the ammonia synthesis reaction via the utilization of high pressures of 150-300 bar, resulting in high energy consumption. The prospect of solid state ammonia synthesis (SSAS) in proton conducting electrolysis cells (PCEC) has been the subject of increased interest recently [1]. It features steam in place of H 2 as a reactant and the electrochemical activation of N 2 at the hydrogen electrode (cathode) through the use of a catalyst. Possible candidates are metallic Ru or Fe, analogous to the thermocatalytic Haber-Bosch process. The implementation of the catalyst in the electrochemical cell is critical to the performance of the system. In order to augment the kinetics, high amounts of catalyst near the electrode-electrolyte interface are desired. Therefore, the microstructure of the electrode is of primary interest, as the void fraction of the layer must be large enough to enable a well-distributed deposition of catalyst particles. This may be achieved via the use of a pore-former, e.g. graphite powder, in the wet-route elaboration of the hydrogen electrode (see Fig. 1). However, modifications must not decrease the mechanical properties of the layer. The effect of various parameters (sintering conditions, thickness of the electrode layer, effect of additives to enhance wettability) on the final electrode structure were investigated, as well as the influence of the infiltration protocol (evacuation time, number of infiltration steps, drying procedure). The findings along with preliminary electrochemical characterizations will be discussed. [1] V. Kyriakou, I. Garagounis, E. Vasileiou, A. Vourros, M. Stoukides, Progress in the Electrochemical Synthesis of Ammonia, Catalysis Today, 286 (2017) 2-13. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一氧化二氢完成签到,获得积分10
刚刚
高高电灯胆完成签到,获得积分10
1秒前
LiLi完成签到 ,获得积分10
1秒前
儒雅的蜜粉完成签到,获得积分10
2秒前
美好师完成签到,获得积分10
2秒前
3秒前
3秒前
Duke完成签到,获得积分10
3秒前
情怀应助Janus采纳,获得10
3秒前
炙热的笑翠完成签到,获得积分10
5秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
Hao应助科研通管家采纳,获得10
6秒前
Owen应助科研通管家采纳,获得100
6秒前
qin完成签到,获得积分10
7秒前
Bzm100发布了新的文献求助10
7秒前
露露完成签到 ,获得积分10
8秒前
寒冷丹雪完成签到,获得积分10
8秒前
ytg922完成签到,获得积分0
8秒前
cc2001完成签到,获得积分20
9秒前
搜集达人应助小红花采纳,获得10
10秒前
Regina完成签到 ,获得积分10
10秒前
chen完成签到 ,获得积分10
10秒前
蛀牙牙完成签到,获得积分10
10秒前
朴实乐天完成签到,获得积分10
11秒前
唐泽雪穗发布了新的文献求助40
11秒前
gaozengxiang完成签到,获得积分10
11秒前
祁轩完成签到,获得积分10
11秒前
刚国忠完成签到,获得积分20
12秒前
11完成签到 ,获得积分10
13秒前
guard完成签到,获得积分0
13秒前
楚行完成签到 ,获得积分10
13秒前
科研通AI5应助PPD采纳,获得10
15秒前
科研通AI5应助PPD采纳,获得10
15秒前
科研通AI5应助PPD采纳,获得10
15秒前
科研通AI5应助PPD采纳,获得10
15秒前
科研通AI5应助PPD采纳,获得30
15秒前
科研通AI5应助PPD采纳,获得10
15秒前
科研通AI5应助PPD采纳,获得10
15秒前
科研通AI5应助PPD采纳,获得10
15秒前
科研通AI5应助PPD采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5066890
求助须知:如何正确求助?哪些是违规求助? 4288788
关于积分的说明 13360535
捐赠科研通 4108184
什么是DOI,文献DOI怎么找? 2249564
邀请新用户注册赠送积分活动 1255029
关于科研通互助平台的介绍 1187492