Demonstration of mid-infrared slow light one-dimensional photonic crystal ring resonator with high-order photonic bandgap

光子晶体 材料科学 慢光 谐振器 光学 光电子学 红外线的 带隙 光子学 吸收(声学) 波导管 物理
作者
Fujun Sun,Bowei Dong,Jingxuan Wei,Yiming Ma,Huiping Tian,Chengkuo Lee
出处
期刊:Optics Express [The Optical Society]
卷期号:28 (21): 30736-30736 被引量:20
标识
DOI:10.1364/oe.392677
摘要

Integrated mid-infrared sensing offers opportunities for the compact, selective, label-free and non-invasive detection of the absorption fingerprints of many chemical compounds, which is of great scientific and technological importance. To achieve high sensitivity, the key is to boost the interaction between light and analytes. So far, approaches like leveraging the slow light effect, increasing optical path length and enhancing the electric field confinement (f) in the analyte are envisaged. Here, we experimentally investigate a slow light one-dimensional photonic crystal ring resonator operating at high-order photonic bandgap (PBG) in mid-infrared range, which features both strong field confinement in analyte and slow light effect. And the optical path length can also be improved by the resoantor compared with waveguide structure. The characteristics of the first- and second-order bandgap edges are studied by changing the number of patterned periodical holes while keeping other parameters unchanged to confine the bands in the measurement range of our setup between 3.64 and 4.0 µm. Temperature sensitivity of different modes is also experimentally studied, which helps to understand the field confinement. Compared to the fundamental PBG edge modes, the second PBG edge modes show a higher field confinement in the analyte and a comparable group index, leading to larger light-matter interaction. Our work could be used for the design of ultra-sensitive integrated mid-infrared sensors, which have widespread applications including environment monitoring, biosensing and chemical analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
越幸运完成签到 ,获得积分10
刚刚
young完成签到 ,获得积分10
刚刚
天天快乐应助成就的烧鹅采纳,获得10
1秒前
cora发布了新的文献求助10
1秒前
诚心的不斜完成签到,获得积分10
2秒前
bono完成签到 ,获得积分10
2秒前
2秒前
3秒前
又要起名字关注了科研通微信公众号
4秒前
可爱的函函应助su采纳,获得10
4秒前
5秒前
澳澳完成签到,获得积分10
6秒前
6秒前
善学以致用应助纯真抽屉采纳,获得10
7秒前
7秒前
笑笑发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
10秒前
Hello应助cora采纳,获得10
10秒前
汉唐精彩完成签到,获得积分10
11秒前
11秒前
12秒前
田茂青完成签到,获得积分10
12秒前
damian发布了新的文献求助30
12秒前
12秒前
聪明芒果完成签到,获得积分10
12秒前
Vvvvvvv应助虫二先生采纳,获得10
12秒前
西大研究生完成签到 ,获得积分10
12秒前
13秒前
13秒前
呆呆完成签到,获得积分10
13秒前
左一酱完成签到 ,获得积分10
14秒前
平淡南霜发布了新的文献求助10
14秒前
Sweet关注了科研通微信公众号
14秒前
14秒前
赘婿应助wangfu采纳,获得10
15秒前
15秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794