An efficient object detection using OFSA for thermal imaging

人工智能 计算机视觉 计算机科学 光学(聚焦) 转化(遗传学) 面子(社会学概念) 视觉对象识别的认知神经科学 对象(语法) 面部识别系统 目标检测 变换矩阵 模式识别(心理学) 基因 光学 物理 社会学 经典力学 化学 生物化学 运动学 社会科学
作者
V. Teju,D. Bhavana
出处
期刊:International Journal of Electrical Engineering Education [SAGE]
卷期号:60 (1_suppl): 1957-1978 被引量:12
标识
DOI:10.1177/0020720920944434
摘要

The demand for identifying a reliable person is increased because of security issues in our daily life. At present, to identify a person biometric technique such as face recognition is introduced. Since,a person with abnormal behaviour recognition system has reached certain level, their accomplishments in real time applications are restricted by challenges, such as illumination variations. The present visual recognition system is good at controlled illumination conditions and thermal face recognition system is better for detecting disguised persons or when there is no illumination control. Hence, a hybrid system which uses both visual and thermal images for recognising a person is better. The objective of this research is to implement a method which improves the quality of the image by fusing visual and thermal imaging images. Our research methodology has introduced to enhance servo line camera images. Nonlinear image transfer functions were introduced,and the parameters associated with those functions are determined by image statistics for making adaptive algorithms. Next methodswereintroduced for registering the visual images to their consequent thermal images. To get a transformation matrix for the registration, the landmarks in the images are first detected and a subset of those landmarks were selected to obtain the matrix, we propose a hybrid algorithm for detection, tracking and classification using OFSA algorithm to fuse the registered thermal and visual images. In this research, we focus on object detection using OFSA algorithm for more accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zhangyu发布了新的文献求助10
1秒前
2秒前
2秒前
LONG完成签到,获得积分10
2秒前
matty完成签到 ,获得积分10
2秒前
4秒前
fat发布了新的文献求助10
4秒前
元谷雪应助洁净的亦竹采纳,获得10
5秒前
CTX发布了新的文献求助10
6秒前
6秒前
liyuxuan发布了新的文献求助10
6秒前
CLAIR发布了新的文献求助10
7秒前
7秒前
xjtuwang0618完成签到,获得积分10
7秒前
kevin完成签到,获得积分10
8秒前
9秒前
岸上牛发布了新的文献求助10
9秒前
xiao123789发布了新的文献求助10
10秒前
刘小新完成签到,获得积分10
10秒前
11秒前
调皮的西装完成签到,获得积分10
11秒前
12秒前
李万发布了新的文献求助10
13秒前
乐乐乐乐乐乐应助林子恒采纳,获得10
13秒前
Doly发布了新的文献求助30
13秒前
顾矜应助fat采纳,获得10
15秒前
16秒前
希望天下0贩的0应助ophlujun采纳,获得30
16秒前
逝月完成签到,获得积分10
17秒前
不配.应助KK采纳,获得10
18秒前
大模型应助三国杀校老弟采纳,获得10
18秒前
21秒前
陈龙完成签到,获得积分10
22秒前
不再褪色发布了新的文献求助10
22秒前
傲慢与偏见zz应助华hua采纳,获得10
23秒前
25秒前
荣不弱完成签到,获得积分10
27秒前
闻闻完成签到,获得积分10
27秒前
EVE发布了新的文献求助10
27秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3222532
求助须知:如何正确求助?哪些是违规求助? 2871168
关于积分的说明 8174227
捐赠科研通 2538149
什么是DOI,文献DOI怎么找? 1370339
科研通“疑难数据库(出版商)”最低求助积分说明 645783
邀请新用户注册赠送积分活动 619564