An efficient object detection using OFSA for thermal imaging

人工智能 计算机视觉 计算机科学 光学(聚焦) 转化(遗传学) 面子(社会学概念) 视觉对象识别的认知神经科学 对象(语法) 面部识别系统 目标检测 变换矩阵 模式识别(心理学) 基因 光学 物理 社会学 经典力学 化学 生物化学 运动学 社会科学
作者
V. Teju,D. Bhavana
出处
期刊:International Journal of Electrical Engineering Education [SAGE]
卷期号:60 (1_suppl): 1957-1978 被引量:12
标识
DOI:10.1177/0020720920944434
摘要

The demand for identifying a reliable person is increased because of security issues in our daily life. At present, to identify a person biometric technique such as face recognition is introduced. Since,a person with abnormal behaviour recognition system has reached certain level, their accomplishments in real time applications are restricted by challenges, such as illumination variations. The present visual recognition system is good at controlled illumination conditions and thermal face recognition system is better for detecting disguised persons or when there is no illumination control. Hence, a hybrid system which uses both visual and thermal images for recognising a person is better. The objective of this research is to implement a method which improves the quality of the image by fusing visual and thermal imaging images. Our research methodology has introduced to enhance servo line camera images. Nonlinear image transfer functions were introduced,and the parameters associated with those functions are determined by image statistics for making adaptive algorithms. Next methodswereintroduced for registering the visual images to their consequent thermal images. To get a transformation matrix for the registration, the landmarks in the images are first detected and a subset of those landmarks were selected to obtain the matrix, we propose a hybrid algorithm for detection, tracking and classification using OFSA algorithm to fuse the registered thermal and visual images. In this research, we focus on object detection using OFSA algorithm for more accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虚幻唯雪完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
哚圆圆发布了新的文献求助10
1秒前
2秒前
tianquanbi发布了新的文献求助10
2秒前
李爱国应助eywct采纳,获得10
2秒前
3秒前
3秒前
CipherSage应助熊国开采纳,获得10
3秒前
Sweet完成签到 ,获得积分10
3秒前
gzslwddhjx发布了新的文献求助10
4秒前
Islet发布了新的文献求助10
4秒前
5秒前
5秒前
李爱国应助王雪儿哈哈哈采纳,获得10
6秒前
SciGPT应助llll采纳,获得10
6秒前
8秒前
8秒前
8秒前
8秒前
晚上吃什么完成签到,获得积分10
8秒前
ChemMa发布了新的文献求助10
9秒前
丫丫发布了新的文献求助10
9秒前
易安发布了新的文献求助10
9秒前
10秒前
11秒前
11秒前
笨笨忘幽发布了新的文献求助10
11秒前
窦文涛完成签到,获得积分10
11秒前
11秒前
完美世界应助liuying采纳,获得10
12秒前
13秒前
THJJ完成签到,获得积分10
13秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
云赵完成签到,获得积分10
14秒前
斯文败类应助易安采纳,获得10
14秒前
14秒前
CWNU_HAN应助jyk采纳,获得30
15秒前
高天雨发布了新的文献求助20
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785120
求助须知:如何正确求助?哪些是违规求助? 5686059
关于积分的说明 15466834
捐赠科研通 4914228
什么是DOI,文献DOI怎么找? 2645117
邀请新用户注册赠送积分活动 1592946
关于科研通互助平台的介绍 1547300