Microwave absorption performance of 2D Iron-Quinoid MOF

吸收(声学) 微波食品加热 层状结构 反射损耗 碳化 材料科学 光电子学 纳米技术 化学 多孔性 金属有机骨架 化学工程 吸附 扫描电子显微镜 复合材料 有机化学 工程类 物理 复合数 量子力学
作者
Huijie Wei,Yu Tian,Qian Chen,Diana Estévez,Peng Xu,Hua‐Xin Peng,Faxiang Qin
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:405: 126637-126637 被引量:96
标识
DOI:10.1016/j.cej.2020.126637
摘要

The excellent properties including high porosity, large specific surface area, low density, and strong controllability of metal–organic frameworks (MOFs) make them one of the preferred materials for a plethora of applications. One particular intriguing application, among others, is microwave absorption, to which majority of research has been devoted by using MOF as templates to prepare porous carbon via carbonization. Contrary to such approach, in this study we propose a novel strategy based on leveraging the intrinsic attributes of MOF. Through a simple and rapid microwave solvothermal method, lamellar redox-active iron-quinoid MOFs were synthesized and their morphology and crystallinity are modulated as a function of reaction temperature. The conductivity of the prepared MOF reached up to 2 × 10−3 S/m, which is comparable to that of semiconductors. In addition, magnetic hysteresis was observed at 300 K. The reaction temperature proved pivotal to attain maximum microwave absorption of −73.5 dB at 13.8 GHz with a matching thickness of 3.3 mm. Effective absorbing bandwidth with a reflection loss below −10 dB can be also gained in a wide frequency range of 9.8–15.9 GHz. The optimal microwave absorbing performance was mainly attributed to the simultaneous implementation of magnetic and electrical loss in a single iron-quinoid MOF resulting in adequate impedance matching through modulable magnetic and electric properties. The developed iron-quinoid MOF material opens up new opportunities to achieve high-efficiency, lightweight and tunable microwave absorbers. The material-structure coupling strategy here is instrumental to developing next-generation high-performance microwave absorbing materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shimmery完成签到,获得积分10
1秒前
咔咔完成签到 ,获得积分20
1秒前
superworm1发布了新的文献求助10
1秒前
1秒前
hy发布了新的文献求助10
1秒前
舒心赛凤完成签到,获得积分10
1秒前
菠菜菜str完成签到,获得积分10
3秒前
悟空发布了新的文献求助10
3秒前
优雅山柏发布了新的文献求助10
3秒前
3秒前
junc发布了新的文献求助20
3秒前
memory发布了新的文献求助10
3秒前
罗曼长情雪兰完成签到,获得积分10
4秒前
酷炫板凳发布了新的文献求助10
4秒前
Sue发布了新的文献求助10
4秒前
5秒前
张先森完成签到,获得积分10
5秒前
Orange应助饭小心采纳,获得10
5秒前
jason完成签到,获得积分10
5秒前
5秒前
5秒前
糖糖完成签到,获得积分10
6秒前
小二郎应助幸福胡萝卜采纳,获得10
6秒前
6秒前
亵渎完成签到,获得积分10
6秒前
mc1220完成签到,获得积分10
7秒前
7秒前
冰刀完成签到,获得积分10
8秒前
kid1412完成签到 ,获得积分10
9秒前
LU完成签到,获得积分10
9秒前
小蘑菇应助R先生采纳,获得50
9秒前
9秒前
小嘎完成签到 ,获得积分10
10秒前
10秒前
10秒前
小虎发布了新的文献求助30
10秒前
11秒前
superworm1完成签到,获得积分10
11秒前
不懂事的小孩完成签到,获得积分10
11秒前
张瑶完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762