Baseline Metabolic Tumor Volume in 18FDG-PET-CT Scans in Classical Hodgkin Lymphoma Using Semi-Automatic Segmentation

分割 医学 核医学 正电子发射断层摄影术 经典霍奇金淋巴瘤 淋巴瘤 放射科 霍奇金淋巴瘤 计算机科学 人工智能 内科学
作者
Julia Driessen,Gerben J.C. Zwezerijnen,Jakoba J. Eertink,Marie José Kersten,Anton Hagenbeek,Otto S. Hoekstra,Josée M. Zijlstra,Ronald Boellaard
出处
期刊:Blood [American Society of Hematology]
卷期号:134 (Supplement_1): 4049-4049 被引量:1
标识
DOI:10.1182/blood-2019-125495
摘要

Introduction Baseline metabolic tumor volume (bMTV) is increasingly studied as a prognostic factor for classical Hodgkin lymphoma (cHL). Before implementation as a clinical prognostic marker, it is important to investigate different methods for deriving bMTV since not all methods are suitable for each type of malignancy. Semi-automatic segmentation is influenced less by observer bias and variability compared to manual segmentation and might therefore be more reliable for assessing bMTV. However, not much is known about the use of different semi-automatic segmentation methods and how this influences the prognostic value of bMTV in cHL. Here we present a comparison of bMTV derived with 6 semi-automatic segmentation methods. In addition, a visual quality scoring of all segmentations is performed to gain insight into which segmentation methods could be used to determine bMTV in cHL. Methods We selected 61 baseline 18FDG-PET-CT scans that met specific quality criteria (http://EARL.EANM.org) from patients treated in the Transplant BRaVE study for relapsed/refractory cHL [Blood 2018 132:2923]. Six semi-automatic segmentation methods were applied using the Accurate tool, an in-house developed software application which has already been validated in other types of cancer, including diffuse large B-cell lymphoma [Eur Radiol 2019 06178:9, J Nucl Med. 2018;59(suppl 1):1753]. We compared two fixed thresholds (SUV4.0 and SUV2.5), two relative thresholds (A50P: a contrast corrected 50% of standard uptake value (SUV) peak, and 41max: 41% of SUVmax), and 2 majority vote methods, MV2 and MV3 selecting delineations of ≥2 and ≥3 of previously mentioned methods, respectively. Quality of the segmentation was scored using visual quality scores (QS) by two reviewers (JD, GZ): QS-1 for complete selections containing all visible tumor localizations; QS-2 when segmentations 'flood' into regions with physiological FDG uptake; QS-3 when segmentations do not select all visible lesions; or QS-4: a combination of QS-2 and QS-3. In addition, the quality of the delineation was rated: QS-A for good visual delineation of lesions; QS-B for too small delineation; and QS-C for too large delineation. All segmentations that had score QS-2 or QS-4 were manually adapted by erasing regions that flooded into areas with high physiological uptake. Figure 1 shows examples of the quality scores. We used Spearman's correlations to compare the bMTV of all semi-automatic methods. Comparison of quality scores was performed using chi-square tests. Results The median bMTV differed substantially among the segmentation methods, ranging from 24 mL for SUV4.0 to 88 mL for 41max (Table 1). However, there was a high significant correlation (p <0.0001) between all methods with spearman coefficients ranging between 0.77 and 0.93 (Table 2). The quality of the segmentation was best using the SUV2.5 threshold with QS-1 in 64% of scans and delineation was best for MV3 with QS-A in 56% (Table 3). The segmentation quality was significantly better when less than 5 lesions were present on a scan. A large difference was observed for SUV2.5 with score QS-1 in 91% of cases for scans with <5 lesions (n=22), compared to QS-1 in 49% for scans containing ≥5 lesions (n=39) (p <0.001; Table 3). The delineation quality did not depend on the number of lesions. However, for SUV2.5, A50P and MV3, the delineation was considered better when the SUVmax of selected volumes of interest (VOI) was <10, while SUV4.0 performed significantly better with a SUVmax ≥10 (Table 3). Conclusions We found a good correlation between all methods, suggesting that the segmentation method used will probably not influence the predictive value of bMTV. Ease of use was highest with a semi-automatic segmentation of bMTV using the SUV2.5 segmentation method. SUV2.5 had the best visual quality and needed least manual adaptation. To investigate possible implementation of bMTV in clinical practice, we will validate the quality of the segmentation methods and the predictive value of bMTV in a larger cohort of patients with other prognostic parameters including quantitative radiomics analysis of baseline PET-scans. Disclosures Kersten: Bristol-Myers Squibb: Honoraria, Research Funding; Gilead: Honoraria; Roche: Honoraria, Research Funding; Celgene: Honoraria, Research Funding; Novartis: Honoraria; Mundipharma: Honoraria, Research Funding; Amgen: Honoraria, Research Funding; Miltenyi: Honoraria; Takeda Oncology: Research Funding; Kite Pharma: Honoraria, Research Funding. Zijlstra:Janssen: Honoraria; Gilead: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Takeda: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Roche: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mayimo完成签到,获得积分10
刚刚
jianrobsim完成签到,获得积分10
3秒前
chen完成签到 ,获得积分10
9秒前
忐忑的草丛完成签到,获得积分10
10秒前
七月星河完成签到 ,获得积分10
11秒前
朱冰蓝完成签到 ,获得积分10
11秒前
maxyer完成签到,获得积分10
12秒前
铎铎铎完成签到 ,获得积分10
13秒前
韧迹完成签到 ,获得积分10
17秒前
喔喔佳佳L完成签到 ,获得积分10
21秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
Ava应助科研通管家采纳,获得30
22秒前
和平使命应助科研通管家采纳,获得10
22秒前
刻苦的新烟完成签到 ,获得积分10
26秒前
Muccio完成签到 ,获得积分10
27秒前
现代元灵完成签到 ,获得积分10
31秒前
Qiao完成签到 ,获得积分10
34秒前
无情的语堂完成签到 ,获得积分20
38秒前
shimenwanzhao完成签到 ,获得积分0
40秒前
三脸茫然完成签到 ,获得积分10
43秒前
舒心平蝶完成签到 ,获得积分10
45秒前
tyl完成签到 ,获得积分10
48秒前
荼白完成签到 ,获得积分10
50秒前
鑫鑫完成签到 ,获得积分10
52秒前
高海龙完成签到 ,获得积分10
52秒前
sophia完成签到 ,获得积分10
55秒前
realtimes完成签到,获得积分10
55秒前
Fei发布了新的文献求助30
56秒前
李凤凤完成签到 ,获得积分10
59秒前
红领巾klj完成签到 ,获得积分10
1分钟前
研通通完成签到,获得积分0
1分钟前
大力完成签到 ,获得积分10
1分钟前
vassallo完成签到 ,获得积分10
1分钟前
科研通AI2S应助乐观的乐曲采纳,获得10
1分钟前
yunpeng完成签到 ,获得积分20
1分钟前
1分钟前
灰鸽舞完成签到 ,获得积分10
1分钟前
car子完成签到 ,获得积分10
1分钟前
柒八染完成签到 ,获得积分10
1分钟前
Fei发布了新的文献求助30
1分钟前
高分求助中
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Regression-Based Normative Data for Psychological Assessment 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 700
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3099819
求助须知:如何正确求助?哪些是违规求助? 2751281
关于积分的说明 7612331
捐赠科研通 2403098
什么是DOI,文献DOI怎么找? 1275171
科研通“疑难数据库(出版商)”最低求助积分说明 616276
版权声明 599053