Baseline Metabolic Tumor Volume in 18FDG-PET-CT Scans in Classical Hodgkin Lymphoma Using Semi-Automatic Segmentation

分割 医学 核医学 正电子发射断层摄影术 经典霍奇金淋巴瘤 淋巴瘤 放射科 霍奇金淋巴瘤 计算机科学 人工智能 内科学
作者
Julia Driessen,Gerben J.C. Zwezerijnen,Jakoba J. Eertink,Marie José Kersten,Anton Hagenbeek,Otto S. Hoekstra,Josée M. Zijlstra,Ronald Boellaard
出处
期刊:Blood [Elsevier BV]
卷期号:134 (Supplement_1): 4049-4049 被引量:1
标识
DOI:10.1182/blood-2019-125495
摘要

Introduction Baseline metabolic tumor volume (bMTV) is increasingly studied as a prognostic factor for classical Hodgkin lymphoma (cHL). Before implementation as a clinical prognostic marker, it is important to investigate different methods for deriving bMTV since not all methods are suitable for each type of malignancy. Semi-automatic segmentation is influenced less by observer bias and variability compared to manual segmentation and might therefore be more reliable for assessing bMTV. However, not much is known about the use of different semi-automatic segmentation methods and how this influences the prognostic value of bMTV in cHL. Here we present a comparison of bMTV derived with 6 semi-automatic segmentation methods. In addition, a visual quality scoring of all segmentations is performed to gain insight into which segmentation methods could be used to determine bMTV in cHL. Methods We selected 61 baseline 18FDG-PET-CT scans that met specific quality criteria (http://EARL.EANM.org) from patients treated in the Transplant BRaVE study for relapsed/refractory cHL [Blood 2018 132:2923]. Six semi-automatic segmentation methods were applied using the Accurate tool, an in-house developed software application which has already been validated in other types of cancer, including diffuse large B-cell lymphoma [Eur Radiol 2019 06178:9, J Nucl Med. 2018;59(suppl 1):1753]. We compared two fixed thresholds (SUV4.0 and SUV2.5), two relative thresholds (A50P: a contrast corrected 50% of standard uptake value (SUV) peak, and 41max: 41% of SUVmax), and 2 majority vote methods, MV2 and MV3 selecting delineations of ≥2 and ≥3 of previously mentioned methods, respectively. Quality of the segmentation was scored using visual quality scores (QS) by two reviewers (JD, GZ): QS-1 for complete selections containing all visible tumor localizations; QS-2 when segmentations 'flood' into regions with physiological FDG uptake; QS-3 when segmentations do not select all visible lesions; or QS-4: a combination of QS-2 and QS-3. In addition, the quality of the delineation was rated: QS-A for good visual delineation of lesions; QS-B for too small delineation; and QS-C for too large delineation. All segmentations that had score QS-2 or QS-4 were manually adapted by erasing regions that flooded into areas with high physiological uptake. Figure 1 shows examples of the quality scores. We used Spearman's correlations to compare the bMTV of all semi-automatic methods. Comparison of quality scores was performed using chi-square tests. Results The median bMTV differed substantially among the segmentation methods, ranging from 24 mL for SUV4.0 to 88 mL for 41max (Table 1). However, there was a high significant correlation (p <0.0001) between all methods with spearman coefficients ranging between 0.77 and 0.93 (Table 2). The quality of the segmentation was best using the SUV2.5 threshold with QS-1 in 64% of scans and delineation was best for MV3 with QS-A in 56% (Table 3). The segmentation quality was significantly better when less than 5 lesions were present on a scan. A large difference was observed for SUV2.5 with score QS-1 in 91% of cases for scans with <5 lesions (n=22), compared to QS-1 in 49% for scans containing ≥5 lesions (n=39) (p <0.001; Table 3). The delineation quality did not depend on the number of lesions. However, for SUV2.5, A50P and MV3, the delineation was considered better when the SUVmax of selected volumes of interest (VOI) was <10, while SUV4.0 performed significantly better with a SUVmax ≥10 (Table 3). Conclusions We found a good correlation between all methods, suggesting that the segmentation method used will probably not influence the predictive value of bMTV. Ease of use was highest with a semi-automatic segmentation of bMTV using the SUV2.5 segmentation method. SUV2.5 had the best visual quality and needed least manual adaptation. To investigate possible implementation of bMTV in clinical practice, we will validate the quality of the segmentation methods and the predictive value of bMTV in a larger cohort of patients with other prognostic parameters including quantitative radiomics analysis of baseline PET-scans. Disclosures Kersten: Bristol-Myers Squibb: Honoraria, Research Funding; Gilead: Honoraria; Roche: Honoraria, Research Funding; Celgene: Honoraria, Research Funding; Novartis: Honoraria; Mundipharma: Honoraria, Research Funding; Amgen: Honoraria, Research Funding; Miltenyi: Honoraria; Takeda Oncology: Research Funding; Kite Pharma: Honoraria, Research Funding. Zijlstra:Janssen: Honoraria; Gilead: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Takeda: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Roche: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
长安完成签到,获得积分10
刚刚
Aoka完成签到,获得积分10
4秒前
jhwang完成签到,获得积分10
4秒前
颜云尔发布了新的文献求助10
5秒前
5秒前
宝宝发布了新的文献求助10
5秒前
7秒前
7秒前
自觉语琴完成签到 ,获得积分10
7秒前
玉米侠完成签到,获得积分10
8秒前
英姑应助五花肉采纳,获得10
10秒前
10秒前
程景安完成签到,获得积分20
11秒前
赘婿应助辜越涛采纳,获得10
11秒前
13秒前
123456发布了新的文献求助10
14秒前
安谣完成签到,获得积分20
14秒前
16秒前
程景安发布了新的文献求助20
18秒前
19秒前
Akim应助宝宝采纳,获得10
20秒前
20秒前
董璐完成签到,获得积分10
21秒前
凉凉应助妩媚的尔阳采纳,获得10
21秒前
烟花应助PhDshi采纳,获得10
22秒前
小米虫发布了新的文献求助10
22秒前
香蕉觅云应助CHSLN采纳,获得10
23秒前
23秒前
桃子完成签到,获得积分10
24秒前
24秒前
yy家的小哥哥完成签到,获得积分10
25秒前
KD357完成签到,获得积分10
25秒前
毅宁静610发布了新的文献求助10
26秒前
26秒前
Lucy小影完成签到,获得积分10
27秒前
28秒前
22222222aa发布了新的文献求助10
28秒前
辜越涛发布了新的文献求助10
28秒前
28秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010877
求助须知:如何正确求助?哪些是违规求助? 3550541
关于积分的说明 11305921
捐赠科研通 3284903
什么是DOI,文献DOI怎么找? 1810905
邀请新用户注册赠送积分活动 886591
科研通“疑难数据库(出版商)”最低求助积分说明 811509