Baseline Metabolic Tumor Volume in 18FDG-PET-CT Scans in Classical Hodgkin Lymphoma Using Semi-Automatic Segmentation

分割 医学 核医学 正电子发射断层摄影术 经典霍奇金淋巴瘤 淋巴瘤 放射科 霍奇金淋巴瘤 计算机科学 人工智能 内科学
作者
Julia Driessen,Gerben J.C. Zwezerijnen,Jakoba J. Eertink,Marie José Kersten,Anton Hagenbeek,Otto S. Hoekstra,Josée M. Zijlstra,Ronald Boellaard
出处
期刊:Blood [American Society of Hematology]
卷期号:134 (Supplement_1): 4049-4049 被引量:1
标识
DOI:10.1182/blood-2019-125495
摘要

Introduction Baseline metabolic tumor volume (bMTV) is increasingly studied as a prognostic factor for classical Hodgkin lymphoma (cHL). Before implementation as a clinical prognostic marker, it is important to investigate different methods for deriving bMTV since not all methods are suitable for each type of malignancy. Semi-automatic segmentation is influenced less by observer bias and variability compared to manual segmentation and might therefore be more reliable for assessing bMTV. However, not much is known about the use of different semi-automatic segmentation methods and how this influences the prognostic value of bMTV in cHL. Here we present a comparison of bMTV derived with 6 semi-automatic segmentation methods. In addition, a visual quality scoring of all segmentations is performed to gain insight into which segmentation methods could be used to determine bMTV in cHL. Methods We selected 61 baseline 18FDG-PET-CT scans that met specific quality criteria (http://EARL.EANM.org) from patients treated in the Transplant BRaVE study for relapsed/refractory cHL [Blood 2018 132:2923]. Six semi-automatic segmentation methods were applied using the Accurate tool, an in-house developed software application which has already been validated in other types of cancer, including diffuse large B-cell lymphoma [Eur Radiol 2019 06178:9, J Nucl Med. 2018;59(suppl 1):1753]. We compared two fixed thresholds (SUV4.0 and SUV2.5), two relative thresholds (A50P: a contrast corrected 50% of standard uptake value (SUV) peak, and 41max: 41% of SUVmax), and 2 majority vote methods, MV2 and MV3 selecting delineations of ≥2 and ≥3 of previously mentioned methods, respectively. Quality of the segmentation was scored using visual quality scores (QS) by two reviewers (JD, GZ): QS-1 for complete selections containing all visible tumor localizations; QS-2 when segmentations 'flood' into regions with physiological FDG uptake; QS-3 when segmentations do not select all visible lesions; or QS-4: a combination of QS-2 and QS-3. In addition, the quality of the delineation was rated: QS-A for good visual delineation of lesions; QS-B for too small delineation; and QS-C for too large delineation. All segmentations that had score QS-2 or QS-4 were manually adapted by erasing regions that flooded into areas with high physiological uptake. Figure 1 shows examples of the quality scores. We used Spearman's correlations to compare the bMTV of all semi-automatic methods. Comparison of quality scores was performed using chi-square tests. Results The median bMTV differed substantially among the segmentation methods, ranging from 24 mL for SUV4.0 to 88 mL for 41max (Table 1). However, there was a high significant correlation (p <0.0001) between all methods with spearman coefficients ranging between 0.77 and 0.93 (Table 2). The quality of the segmentation was best using the SUV2.5 threshold with QS-1 in 64% of scans and delineation was best for MV3 with QS-A in 56% (Table 3). The segmentation quality was significantly better when less than 5 lesions were present on a scan. A large difference was observed for SUV2.5 with score QS-1 in 91% of cases for scans with <5 lesions (n=22), compared to QS-1 in 49% for scans containing ≥5 lesions (n=39) (p <0.001; Table 3). The delineation quality did not depend on the number of lesions. However, for SUV2.5, A50P and MV3, the delineation was considered better when the SUVmax of selected volumes of interest (VOI) was <10, while SUV4.0 performed significantly better with a SUVmax ≥10 (Table 3). Conclusions We found a good correlation between all methods, suggesting that the segmentation method used will probably not influence the predictive value of bMTV. Ease of use was highest with a semi-automatic segmentation of bMTV using the SUV2.5 segmentation method. SUV2.5 had the best visual quality and needed least manual adaptation. To investigate possible implementation of bMTV in clinical practice, we will validate the quality of the segmentation methods and the predictive value of bMTV in a larger cohort of patients with other prognostic parameters including quantitative radiomics analysis of baseline PET-scans. Disclosures Kersten: Bristol-Myers Squibb: Honoraria, Research Funding; Gilead: Honoraria; Roche: Honoraria, Research Funding; Celgene: Honoraria, Research Funding; Novartis: Honoraria; Mundipharma: Honoraria, Research Funding; Amgen: Honoraria, Research Funding; Miltenyi: Honoraria; Takeda Oncology: Research Funding; Kite Pharma: Honoraria, Research Funding. Zijlstra:Janssen: Honoraria; Gilead: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Takeda: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Roche: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
daidai完成签到,获得积分10
1秒前
1秒前
辛勤凝丝发布了新的文献求助10
2秒前
3秒前
FashionBoy应助枭94采纳,获得10
4秒前
StarChen完成签到,获得积分10
5秒前
yao完成签到 ,获得积分10
5秒前
小羊完成签到,获得积分10
6秒前
哈哈哈发布了新的文献求助10
6秒前
7秒前
无限草丛完成签到,获得积分10
7秒前
8秒前
雨恋凡尘完成签到,获得积分0
9秒前
1中蓝完成签到 ,获得积分10
10秒前
蝈蝈完成签到,获得积分10
10秒前
阳静发布了新的文献求助10
11秒前
谨慎傲晴发布了新的文献求助30
12秒前
快乐的元霜完成签到,获得积分10
13秒前
鹿友绿发布了新的文献求助10
13秒前
13秒前
隐形曼青应助Ra1n采纳,获得30
15秒前
小白完成签到,获得积分10
15秒前
15秒前
香蕉觅云应助superworm1采纳,获得10
16秒前
立青发布了新的文献求助10
16秒前
今后应助ssss采纳,获得10
18秒前
浮游应助zhuh采纳,获得10
18秒前
生活的狗发布了新的文献求助10
19秒前
宋虹发布了新的文献求助10
19秒前
枭94发布了新的文献求助10
19秒前
殷勤的紫槐应助ccq采纳,获得200
20秒前
乐茵完成签到,获得积分20
20秒前
微笑芒果完成签到 ,获得积分0
21秒前
科研通AI6应助灵巧大地采纳,获得10
22秒前
22秒前
浮游应助遮宁采纳,获得10
25秒前
25秒前
df完成签到 ,获得积分10
25秒前
李欣纾发布了新的文献求助10
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565388
求助须知:如何正确求助?哪些是违规求助? 4650379
关于积分的说明 14690990
捐赠科研通 4592263
什么是DOI,文献DOI怎么找? 2519544
邀请新用户注册赠送积分活动 1491994
关于科研通互助平台的介绍 1463199