清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Baseline Metabolic Tumor Volume in 18FDG-PET-CT Scans in Classical Hodgkin Lymphoma Using Semi-Automatic Segmentation

分割 医学 核医学 正电子发射断层摄影术 经典霍奇金淋巴瘤 淋巴瘤 放射科 霍奇金淋巴瘤 计算机科学 人工智能 内科学
作者
Julia Driessen,Gerben J.C. Zwezerijnen,Jakoba J. Eertink,Marie José Kersten,Anton Hagenbeek,Otto S. Hoekstra,Josée M. Zijlstra,Ronald Boellaard
出处
期刊:Blood [American Society of Hematology]
卷期号:134 (Supplement_1): 4049-4049 被引量:1
标识
DOI:10.1182/blood-2019-125495
摘要

Introduction Baseline metabolic tumor volume (bMTV) is increasingly studied as a prognostic factor for classical Hodgkin lymphoma (cHL). Before implementation as a clinical prognostic marker, it is important to investigate different methods for deriving bMTV since not all methods are suitable for each type of malignancy. Semi-automatic segmentation is influenced less by observer bias and variability compared to manual segmentation and might therefore be more reliable for assessing bMTV. However, not much is known about the use of different semi-automatic segmentation methods and how this influences the prognostic value of bMTV in cHL. Here we present a comparison of bMTV derived with 6 semi-automatic segmentation methods. In addition, a visual quality scoring of all segmentations is performed to gain insight into which segmentation methods could be used to determine bMTV in cHL. Methods We selected 61 baseline 18FDG-PET-CT scans that met specific quality criteria (http://EARL.EANM.org) from patients treated in the Transplant BRaVE study for relapsed/refractory cHL [Blood 2018 132:2923]. Six semi-automatic segmentation methods were applied using the Accurate tool, an in-house developed software application which has already been validated in other types of cancer, including diffuse large B-cell lymphoma [Eur Radiol 2019 06178:9, J Nucl Med. 2018;59(suppl 1):1753]. We compared two fixed thresholds (SUV4.0 and SUV2.5), two relative thresholds (A50P: a contrast corrected 50% of standard uptake value (SUV) peak, and 41max: 41% of SUVmax), and 2 majority vote methods, MV2 and MV3 selecting delineations of ≥2 and ≥3 of previously mentioned methods, respectively. Quality of the segmentation was scored using visual quality scores (QS) by two reviewers (JD, GZ): QS-1 for complete selections containing all visible tumor localizations; QS-2 when segmentations 'flood' into regions with physiological FDG uptake; QS-3 when segmentations do not select all visible lesions; or QS-4: a combination of QS-2 and QS-3. In addition, the quality of the delineation was rated: QS-A for good visual delineation of lesions; QS-B for too small delineation; and QS-C for too large delineation. All segmentations that had score QS-2 or QS-4 were manually adapted by erasing regions that flooded into areas with high physiological uptake. Figure 1 shows examples of the quality scores. We used Spearman's correlations to compare the bMTV of all semi-automatic methods. Comparison of quality scores was performed using chi-square tests. Results The median bMTV differed substantially among the segmentation methods, ranging from 24 mL for SUV4.0 to 88 mL for 41max (Table 1). However, there was a high significant correlation (p <0.0001) between all methods with spearman coefficients ranging between 0.77 and 0.93 (Table 2). The quality of the segmentation was best using the SUV2.5 threshold with QS-1 in 64% of scans and delineation was best for MV3 with QS-A in 56% (Table 3). The segmentation quality was significantly better when less than 5 lesions were present on a scan. A large difference was observed for SUV2.5 with score QS-1 in 91% of cases for scans with <5 lesions (n=22), compared to QS-1 in 49% for scans containing ≥5 lesions (n=39) (p <0.001; Table 3). The delineation quality did not depend on the number of lesions. However, for SUV2.5, A50P and MV3, the delineation was considered better when the SUVmax of selected volumes of interest (VOI) was <10, while SUV4.0 performed significantly better with a SUVmax ≥10 (Table 3). Conclusions We found a good correlation between all methods, suggesting that the segmentation method used will probably not influence the predictive value of bMTV. Ease of use was highest with a semi-automatic segmentation of bMTV using the SUV2.5 segmentation method. SUV2.5 had the best visual quality and needed least manual adaptation. To investigate possible implementation of bMTV in clinical practice, we will validate the quality of the segmentation methods and the predictive value of bMTV in a larger cohort of patients with other prognostic parameters including quantitative radiomics analysis of baseline PET-scans. Disclosures Kersten: Bristol-Myers Squibb: Honoraria, Research Funding; Gilead: Honoraria; Roche: Honoraria, Research Funding; Celgene: Honoraria, Research Funding; Novartis: Honoraria; Mundipharma: Honoraria, Research Funding; Amgen: Honoraria, Research Funding; Miltenyi: Honoraria; Takeda Oncology: Research Funding; Kite Pharma: Honoraria, Research Funding. Zijlstra:Janssen: Honoraria; Gilead: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Takeda: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Roche: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
辛勤者完成签到,获得积分10
7秒前
King完成签到 ,获得积分10
20秒前
24秒前
制药人完成签到 ,获得积分10
29秒前
自然的含蕾完成签到 ,获得积分0
57秒前
车灵波完成签到 ,获得积分10
58秒前
111完成签到 ,获得积分10
1分钟前
1分钟前
ZHANG完成签到 ,获得积分10
1分钟前
1分钟前
杨羕完成签到,获得积分10
1分钟前
Eid发布了新的文献求助10
1分钟前
时老完成签到 ,获得积分10
1分钟前
简爱完成签到 ,获得积分10
1分钟前
氟锑酸完成签到 ,获得积分10
1分钟前
白白不喽完成签到 ,获得积分10
1分钟前
1分钟前
keyanxiaobaishu完成签到 ,获得积分10
1分钟前
Eid发布了新的文献求助10
1分钟前
荣浩宇完成签到 ,获得积分10
2分钟前
ramsey33完成签到 ,获得积分10
2分钟前
研友_8WbVOZ完成签到,获得积分10
2分钟前
秋夜临完成签到,获得积分0
2分钟前
轻松元绿完成签到 ,获得积分0
2分钟前
hanxiaodong完成签到,获得积分10
2分钟前
小果完成签到 ,获得积分10
2分钟前
卓初露完成签到 ,获得积分10
2分钟前
Roy完成签到,获得积分10
3分钟前
Rose_Yang完成签到 ,获得积分10
3分钟前
Gary完成签到 ,获得积分10
3分钟前
jerry完成签到 ,获得积分10
3分钟前
宇文雨文完成签到 ,获得积分10
3分钟前
顺利的雁梅完成签到 ,获得积分10
3分钟前
善学以致用应助蟪蛄鸪采纳,获得10
3分钟前
叁月二完成签到 ,获得积分10
3分钟前
yindi1991完成签到 ,获得积分10
4分钟前
单小芫完成签到 ,获得积分10
4分钟前
张兴博完成签到 ,获得积分10
4分钟前
猪猪完成签到 ,获得积分10
4分钟前
攀攀完成签到 ,获得积分10
4分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertebrate Palaeontology, 5th Edition 530
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5347302
求助须知:如何正确求助?哪些是违规求助? 4481596
关于积分的说明 13947880
捐赠科研通 4379812
什么是DOI,文献DOI怎么找? 2406577
邀请新用户注册赠送积分活动 1399174
关于科研通互助平台的介绍 1372199