Electrospun Core–Shell Nanofibrous Membranes with Nanocellulose-Stabilized Carbon Nanotubes for Use as High-Performance Flexible Supercapacitor Electrodes with Enhanced Water Resistance, Thermal Stability, and Mechanical Toughness

材料科学 超级电容器 碳纳米管 复合材料 热稳定性 乙烯醇 聚苯胺 静电纺丝 涂层 电极 纳米复合材料 电容 纳米纤维 聚合物 化学工程 聚合 工程类 物理化学 化学
作者
Jingquan Han,Siwei Wang,Sailing Zhu,Chaobo Huang,Yiying Yue,Changtong Mei,Xinwu Xu,Changlei Xia
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:11 (47): 44624-44635 被引量:178
标识
DOI:10.1021/acsami.9b16458
摘要

A high-performance flexible supercapacitor electrode with a core–shell structure is successfully developed from cellulose nanocrystal (CNC)-stabilized carbon nanotubes (CNTs). By incorporating poly(vinyl alcohol) (PVA) and poly(acrylic acid) (PAA), a cross-linked nanofibrous membrane (CNT–CNC/PVA–PAA) is prepared as the core material via directional electrospinning, followed by a thermal treatment. The flexible supercapacitor electrodes are eventually fabricated via the in situ polymerization of polyaniline (PANI), which was used as the coating shell material, on the aligned electrospun nanofibers. By taking advantage of the thermally induced esterification cross-linking that occurs among PVA, PAA, and the CNT–CNC nanohybrids, the membranes present with enhanced water resistance, mechanical strength, and thermal stability. After the surface coating of the PANI shell, the optimized PANI@CNT–CNC/PVA–PAA nanofibrous membranes exhibit a large porosity, an enhanced specific surface area, a superior tensile strength of ∼54.8 MPa, and a favorable electroconductivity of ∼0.44 S m–1. As expected, the nanofibrous electrodes with a specific capacitance of 164.6 F g–1 can maintain 91% of the original capacitance after 2000 cycles. The symmetrical solid-state supercapacitor assembled by the nanofibrous electrodes shows an excellent capacitance of 155.5 F g–1 and a remarkable capacitance retention of 92, 90, and 89% after 2000 cycles under flat, bending, and twisting deformations, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaofeiyan完成签到 ,获得积分10
1秒前
valorb完成签到,获得积分10
1秒前
Liu Xiaojing完成签到,获得积分10
3秒前
tian发布了新的文献求助10
4秒前
9秒前
陈增飞完成签到,获得积分20
9秒前
Lvhao应助Liu Xiaojing采纳,获得10
10秒前
陶弈衡完成签到,获得积分10
11秒前
占那个完成签到 ,获得积分10
13秒前
少十七发布了新的文献求助10
14秒前
17秒前
18秒前
少十七完成签到,获得积分10
19秒前
21秒前
在水一方应助科研通管家采纳,获得10
22秒前
NexusExplorer应助科研通管家采纳,获得10
22秒前
青衍应助科研通管家采纳,获得10
22秒前
22秒前
Owen应助科研通管家采纳,获得10
22秒前
宓天问完成签到,获得积分10
22秒前
Lucas应助科研通管家采纳,获得10
22秒前
搜集达人应助科研通管家采纳,获得30
22秒前
NexusExplorer应助科研通管家采纳,获得10
22秒前
852应助科研通管家采纳,获得10
22秒前
苏卿应助科研通管家采纳,获得10
22秒前
CipherSage应助科研通管家采纳,获得30
22秒前
aaaabc完成签到 ,获得积分10
22秒前
完美世界应助科研通管家采纳,获得10
22秒前
23秒前
23秒前
SciGPT应助科研通管家采纳,获得10
23秒前
Yziii应助科研通管家采纳,获得10
23秒前
苏卿应助科研通管家采纳,获得10
23秒前
zsyzxb完成签到,获得积分10
24秒前
FK7完成签到,获得积分10
25秒前
xiaoxiao发布了新的文献求助10
25秒前
cc完成签到,获得积分10
27秒前
31秒前
lqq的一家之主完成签到,获得积分10
31秒前
33秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165059
求助须知:如何正确求助?哪些是违规求助? 2816125
关于积分的说明 7911486
捐赠科研通 2475817
什么是DOI,文献DOI怎么找? 1318378
科研通“疑难数据库(出版商)”最低求助积分说明 632116
版权声明 602370