Applications of Huang–Rhys theory in semiconductor optical spectroscopy

凝聚态物理 声子 半导体 激子 拉曼散射 拉曼光谱 放松(心理学) 物理 化学 材料科学 量子力学 心理学 社会心理学
作者
Yong Zhang
出处
期刊:Journal of Semiconductors [IOP Publishing]
卷期号:40 (9): 091102-091102 被引量:28
标识
DOI:10.1088/1674-4926/40/9/091102
摘要

Abstract A brief review of Huang–Rhys theory and Albrechtos theory is provided, and their connection and applications are discussed. The former is a first order perturbative theory on optical transitions intended for applications such as absorption and emission involving localized defect or impurity centers, emphasizing lattice relaxation or mixing of vibrational states due to electron–phonon coupling. The coupling strength is described by the Huang–Rhys factor. The latter theory is a second order perturbative theory on optical transitions intended for Raman scattering, and can in-principle include electron–phonon coupling in both electronic states and vibrational states. These two theories can potentially be connected through the common effect of lattice relaxation – non-orthonormal vibrational states associated with different electronic states. Because of this perceived connection, the latter theory is often used to explain resonant Raman scattering of LO phonons in bulk semiconductors and further used to describe the size dependence of electron–phonon coupling or Huang–Rhys factor in semiconductor nanostructures. Specifically, the A term in Albrechtos theory is often invoked to describe the multi-LO-phonon resonant Raman peaks in both bulk and nanostructured semiconductors in the literature, due to the misconception that a free-exciton could have a strong lattice relaxation. Without lattice relaxation, the A term will give rise to Rayleigh or elastic scattering. Lattice relaxation is only significant for highly localized defect or impurity states, and should be practically zero for either single particle states or free exciton states in a bulk semiconductor or for confined states in a semiconductor nanostructure that is not extremely small.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fff发布了新的文献求助10
刚刚
哈哈哈哈啊哈完成签到,获得积分10
刚刚
人可完成签到,获得积分10
1秒前
Grace完成签到 ,获得积分10
1秒前
1秒前
1秒前
orixero应助sddwx采纳,获得10
2秒前
逗小豆发布了新的文献求助10
2秒前
aa发布了新的文献求助10
2秒前
小黄完成签到 ,获得积分10
2秒前
Nolan完成签到,获得积分10
3秒前
CXSCXD完成签到,获得积分10
3秒前
所所应助琪琪的采纳,获得10
4秒前
物理苟完成签到,获得积分10
5秒前
ccm应助yhy采纳,获得10
5秒前
科研通AI2S应助huco采纳,获得10
5秒前
王科研完成签到,获得积分10
6秒前
nn发布了新的文献求助10
6秒前
rr完成签到,获得积分20
7秒前
7秒前
8秒前
Akim应助红书包采纳,获得10
8秒前
Waiting完成签到,获得积分10
8秒前
可爱的雪卉完成签到,获得积分10
8秒前
吴侬软语完成签到 ,获得积分10
8秒前
科研通AI2S应助112233445566采纳,获得10
8秒前
8秒前
9秒前
9秒前
奋斗的绝悟完成签到 ,获得积分10
9秒前
宜醉宜游宜睡举报lucas求助涉嫌违规
9秒前
11秒前
11秒前
12秒前
丘比特应助haha采纳,获得10
12秒前
12秒前
房LY完成签到,获得积分10
12秒前
Sci完成签到,获得积分10
13秒前
牙鸟完成签到,获得积分10
13秒前
闾丘曼安完成签到,获得积分10
13秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142981
求助须知:如何正确求助?哪些是违规求助? 2794000
关于积分的说明 7809074
捐赠科研通 2450260
什么是DOI,文献DOI怎么找? 1303729
科研通“疑难数据库(出版商)”最低求助积分说明 627055
版权声明 601374