Defect Engineering in Photocatalytic Nitrogen Fixation

光催化 固氮 催化作用 氮气 半导体 纳米技术 氨生产 化学 吸附 材料科学 合理设计 化学工程 有机化学 光电子学 工程类
作者
Run Shi,Yunxuan Zhao,Geoffrey I. N. Waterhouse,Shuai Zhang,Tierui Zhang
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:9 (11): 9739-9750 被引量:393
标识
DOI:10.1021/acscatal.9b03246
摘要

Approximately 2% of the energy consumed by humans each year is used to make nitrogen-based fertilizers, with ammonia (NH3) production being the most significant contributor to this energy demand. Currently, NH3 is synthesized by the Haber–Bosch process, an energy-intensive synthesis requiring both high temperatures (400–500 °C) and pressures (150–250 atm) to achieve meaningful rates of N2 conversion. As a means of reducing the energy input and carbon footprint of NH3 synthesis, researchers are now seeking more environmentally friendly approaches for N2 fixation. Photocatalytic NH3 synthesis, using sunlight and a semiconductor photocatalyst, represents one of the more promising strategies for reducing N2 to NH3 (typically employing water as the reducing agent). Rates of photocatalytic NH3 synthesis are currently too low to justify serious practical consideration, which can be traced to the sluggish adsorption/activation kinetics of the N2 molecule on semiconductor catalyst surfaces under ambient temperature and pressure conditions. Recent studies have highlighted the potential of defect engineering for boosting the light-harvesting, charge separation, and adsorption characteristics of semiconductor photocatalysts in reductive processes such as water splitting and CO2 reduction. Herein, we explore the potential of defect engineering to similarly enhance photocatalytic N2 fixation. Special emphasis is placed on structure modulation (especially 2D materials and porous structures) and interface engineering (including vacancy creation, metal doping, and strain) for enhancing N2 activation and conversion. The overarching aim of this Perspective is to provide a snapshot of recent breakthroughs in the rational design of semiconductor photocatalysts for NH3 synthesis, thus providing a useful scaffold for future research in this very exciting and emerging field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lux完成签到,获得积分10
1秒前
传奇3应助范小楠采纳,获得10
1秒前
弩弩hannah完成签到,获得积分10
1秒前
1秒前
鹂鹂复霖霖完成签到,获得积分10
1秒前
香蕉觅云应助牵墨采纳,获得10
2秒前
科研通AI2S应助liyk采纳,获得10
2秒前
安安发布了新的文献求助10
3秒前
充电宝应助Yao采纳,获得10
3秒前
呀呀呀呀完成签到,获得积分10
3秒前
重要英姑完成签到,获得积分10
3秒前
鲸鱼完成签到 ,获得积分10
4秒前
4秒前
在水一方应助负蕲采纳,获得10
4秒前
科研通AI5应助旦皋采纳,获得10
4秒前
Tina完成签到 ,获得积分10
4秒前
幽默酸奶完成签到,获得积分20
5秒前
鞭霆发布了新的文献求助10
5秒前
赘婿应助桃桃采纳,获得10
5秒前
如梦如画完成签到,获得积分10
5秒前
Xinzz完成签到 ,获得积分10
5秒前
重要英姑发布了新的文献求助10
6秒前
Lvweieg完成签到,获得积分10
6秒前
事事顺利发布了新的文献求助10
7秒前
7秒前
knight发布了新的文献求助10
7秒前
caozhi完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
大模型应助碧蓝雨安采纳,获得10
8秒前
8秒前
li完成签到 ,获得积分10
8秒前
结实半邪完成签到,获得积分10
9秒前
9秒前
柠檬九分酸完成签到,获得积分10
10秒前
10秒前
Silieze完成签到,获得积分10
10秒前
哆啦A涵发布了新的文献求助10
11秒前
222发布了新的文献求助10
11秒前
12秒前
科研通AI6应助jyyg采纳,获得30
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600144
求助须知:如何正确求助?哪些是违规求助? 4010398
关于积分的说明 12416277
捐赠科研通 3690163
什么是DOI,文献DOI怎么找? 2034179
邀请新用户注册赠送积分活动 1067543
科研通“疑难数据库(出版商)”最低求助积分说明 952426