Defect Engineering in Photocatalytic Nitrogen Fixation

光催化 固氮 催化作用 氮气 半导体 纳米技术 氨生产 化学 吸附 材料科学 合理设计 化学工程 有机化学 光电子学 工程类
作者
Run Shi,Yunxuan Zhao,Geoffrey I. N. Waterhouse,Shuai Zhang,Tierui Zhang
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:9 (11): 9739-9750 被引量:420
标识
DOI:10.1021/acscatal.9b03246
摘要

Approximately 2% of the energy consumed by humans each year is used to make nitrogen-based fertilizers, with ammonia (NH3) production being the most significant contributor to this energy demand. Currently, NH3 is synthesized by the Haber–Bosch process, an energy-intensive synthesis requiring both high temperatures (400–500 °C) and pressures (150–250 atm) to achieve meaningful rates of N2 conversion. As a means of reducing the energy input and carbon footprint of NH3 synthesis, researchers are now seeking more environmentally friendly approaches for N2 fixation. Photocatalytic NH3 synthesis, using sunlight and a semiconductor photocatalyst, represents one of the more promising strategies for reducing N2 to NH3 (typically employing water as the reducing agent). Rates of photocatalytic NH3 synthesis are currently too low to justify serious practical consideration, which can be traced to the sluggish adsorption/activation kinetics of the N2 molecule on semiconductor catalyst surfaces under ambient temperature and pressure conditions. Recent studies have highlighted the potential of defect engineering for boosting the light-harvesting, charge separation, and adsorption characteristics of semiconductor photocatalysts in reductive processes such as water splitting and CO2 reduction. Herein, we explore the potential of defect engineering to similarly enhance photocatalytic N2 fixation. Special emphasis is placed on structure modulation (especially 2D materials and porous structures) and interface engineering (including vacancy creation, metal doping, and strain) for enhancing N2 activation and conversion. The overarching aim of this Perspective is to provide a snapshot of recent breakthroughs in the rational design of semiconductor photocatalysts for NH3 synthesis, thus providing a useful scaffold for future research in this very exciting and emerging field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tian发布了新的文献求助10
刚刚
嘟嘟请让一让完成签到,获得积分10
1秒前
2秒前
wenlongliu完成签到,获得积分10
2秒前
aaashirz_发布了新的文献求助10
2秒前
3秒前
1223完成签到,获得积分10
3秒前
李爱国应助薛定谔的猫采纳,获得10
3秒前
Absinthe发布了新的文献求助10
3秒前
苦学僧完成签到,获得积分10
4秒前
4秒前
Nathan发布了新的文献求助10
4秒前
Hello应助火星上的半梅采纳,获得10
4秒前
王俊1314完成签到 ,获得积分10
5秒前
luke17743508621完成签到 ,获得积分10
5秒前
青山完成签到,获得积分10
5秒前
会飞的鱼完成签到,获得积分10
5秒前
天天快乐应助陈军采纳,获得10
6秒前
6秒前
yulong完成签到,获得积分10
6秒前
7秒前
123完成签到,获得积分10
7秒前
7秒前
漂亮小白菜完成签到,获得积分20
7秒前
舒适夜南完成签到,获得积分20
8秒前
轮回1奇点完成签到,获得积分10
8秒前
泡泡泡芙完成签到,获得积分10
8秒前
小二郎应助Polaris采纳,获得10
8秒前
安详的断缘完成签到,获得积分10
8秒前
李爱国应助杰克采纳,获得10
8秒前
不想长大完成签到 ,获得积分20
9秒前
不二发布了新的文献求助10
9秒前
里里完成签到,获得积分10
10秒前
lpp_发布了新的文献求助10
10秒前
10秒前
10秒前
athena完成签到,获得积分10
10秒前
阿郑发布了新的文献求助10
11秒前
着急的傲菡完成签到,获得积分10
11秒前
11秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Problem based learning 1000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5388179
求助须知:如何正确求助?哪些是违规求助? 4510159
关于积分的说明 14034562
捐赠科研通 4421062
什么是DOI,文献DOI怎么找? 2428561
邀请新用户注册赠送积分活动 1421212
关于科研通互助平台的介绍 1400459