Defect Engineering in Photocatalytic Nitrogen Fixation

光催化 固氮 催化作用 氮气 半导体 纳米技术 氨生产 化学 吸附 材料科学 合理设计 化学工程 有机化学 光电子学 工程类
作者
Run Shi,Yunxuan Zhao,Geoffrey I. N. Waterhouse,Shuai Zhang,Tierui Zhang
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:9 (11): 9739-9750 被引量:357
标识
DOI:10.1021/acscatal.9b03246
摘要

Approximately 2% of the energy consumed by humans each year is used to make nitrogen-based fertilizers, with ammonia (NH3) production being the most significant contributor to this energy demand. Currently, NH3 is synthesized by the Haber–Bosch process, an energy-intensive synthesis requiring both high temperatures (400–500 °C) and pressures (150–250 atm) to achieve meaningful rates of N2 conversion. As a means of reducing the energy input and carbon footprint of NH3 synthesis, researchers are now seeking more environmentally friendly approaches for N2 fixation. Photocatalytic NH3 synthesis, using sunlight and a semiconductor photocatalyst, represents one of the more promising strategies for reducing N2 to NH3 (typically employing water as the reducing agent). Rates of photocatalytic NH3 synthesis are currently too low to justify serious practical consideration, which can be traced to the sluggish adsorption/activation kinetics of the N2 molecule on semiconductor catalyst surfaces under ambient temperature and pressure conditions. Recent studies have highlighted the potential of defect engineering for boosting the light-harvesting, charge separation, and adsorption characteristics of semiconductor photocatalysts in reductive processes such as water splitting and CO2 reduction. Herein, we explore the potential of defect engineering to similarly enhance photocatalytic N2 fixation. Special emphasis is placed on structure modulation (especially 2D materials and porous structures) and interface engineering (including vacancy creation, metal doping, and strain) for enhancing N2 activation and conversion. The overarching aim of this Perspective is to provide a snapshot of recent breakthroughs in the rational design of semiconductor photocatalysts for NH3 synthesis, thus providing a useful scaffold for future research in this very exciting and emerging field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助科研通管家采纳,获得10
刚刚
刚刚
领导范儿应助科研通管家采纳,获得10
刚刚
Ava应助科研通管家采纳,获得10
刚刚
乐乐应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
愉快之槐应助科研通管家采纳,获得10
刚刚
CodeCraft应助科研通管家采纳,获得10
1秒前
young应助科研通管家采纳,获得10
1秒前
Akim应助科研通管家采纳,获得10
1秒前
1秒前
田様应助科研通管家采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
CAOHOU应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
科研通AI2S应助WQY采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
徐徐完成签到,获得积分10
1秒前
CyrusSo524应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得30
1秒前
1sunpf完成签到,获得积分10
1秒前
1秒前
无花果应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
wen完成签到,获得积分10
2秒前
luxkex完成签到,获得积分10
2秒前
2秒前
务实大神完成签到,获得积分10
3秒前
求大佬帮助完成签到,获得积分10
3秒前
dodo应助ElbingX采纳,获得300
4秒前
5秒前
vander完成签到,获得积分10
5秒前
jam发布了新的文献求助10
5秒前
斯文败类应助livialiu采纳,获得10
5秒前
致行完成签到,获得积分10
5秒前
谭刚完成签到,获得积分20
5秒前
Yang发布了新的文献求助10
5秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016130
求助须知:如何正确求助?哪些是违规求助? 3556145
关于积分的说明 11320169
捐赠科研通 3289087
什么是DOI,文献DOI怎么找? 1812382
邀请新用户注册赠送积分活动 887923
科研通“疑难数据库(出版商)”最低求助积分说明 812051