The Optimal Electronic Structure for High-Mobility 2D Semiconductors: Exceptionally High Hole Mobility in 2D Antimony

电子迁移率 半导体 化学 单层 带隙 凝聚态物理 电子结构 直接和间接带隙 散射 电子能带结构 载流子 电子 光电子学 化学物理 计算化学 材料科学 物理 光学 量子力学 无机化学 生物化学
作者
Long Cheng,Chenmu Zhang,Yuanyue Liu
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:141 (41): 16296-16302 被引量:81
标识
DOI:10.1021/jacs.9b05923
摘要

Two-dimensional (2D) semiconductors have very attractive properties for many applications such as photoelectrochemistry. However, a significant challenge that limits their further developments is the relatively low electron/hole mobility at room temperature. Here using the Boltzmann transport theory with the scattering rates calculated from first-principles that allow us to accurately determine the mobility, we discover an exceptionally high intrinsic mobility of holes in monolayer antimony (Sb), which is ∼1330 cm2 V-1 s-1 at room temperature, much higher than the common 2D semiconductors including MoS2, InSe, and black phosphorus in monolayer form, and is the highest among 2D materials with a band gap of >1 eV reported so far. Its high mobility and the moderate band gap make it very promising for many applications. By comparing the 2D Sb with other 2D materials in the same group, we find that the high mobility is closely related with its electronic structure, which has a sharp and deep valence band valley, and, importantly, located at the Γ point. This electronic structure not only gives rise to a high velocity for charge carriers but also leads to a small density of states for accepting the scattered carriers, particularly by eliminating the valley-valley and peak-valley scatterings that are found to be significant for other materials. This type of electronic structure thus can be used as a target feature to design/discover high-mobility 2D semiconductors. Our work provides a promising material to overcome the mobility issue and also suggests a simple and general principle for high-mobility semiconductor design/discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Pufferfish发布了新的文献求助10
刚刚
1秒前
慕青应助谷歌采纳,获得10
1秒前
1秒前
Owen应助Michael_li采纳,获得10
1秒前
3秒前
3秒前
小太阳发布了新的文献求助10
4秒前
yingying完成签到,获得积分10
4秒前
亵渎完成签到,获得积分10
4秒前
寄凡发布了新的文献求助10
4秒前
哒哒哒完成签到 ,获得积分10
4秒前
5秒前
boniu完成签到,获得积分10
5秒前
自觉士萧发布了新的文献求助10
5秒前
6秒前
思源应助紫金大萝卜采纳,获得50
7秒前
Pufferfish完成签到,获得积分10
7秒前
7秒前
8秒前
刘宇发布了新的文献求助10
9秒前
外向含烟完成签到,获得积分10
9秒前
9秒前
Akim应助整齐万宝路采纳,获得10
10秒前
Wei完成签到 ,获得积分10
10秒前
11秒前
11秒前
12秒前
传奇3应助夭灼采纳,获得10
12秒前
12秒前
英勇小霸王完成签到,获得积分10
13秒前
yusheng发布了新的文献求助10
13秒前
14秒前
yang发布了新的文献求助10
14秒前
14秒前
liherong完成签到,获得积分10
14秒前
15秒前
15秒前
刚刚完成签到,获得积分20
16秒前
猪猪hero发布了新的文献求助30
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3563810
求助须知:如何正确求助?哪些是违规求助? 3137001
关于积分的说明 9420496
捐赠科研通 2837441
什么是DOI,文献DOI怎么找? 1559833
邀请新用户注册赠送积分活动 729198
科研通“疑难数据库(出版商)”最低求助积分说明 717171