The Optimal Electronic Structure for High-Mobility 2D Semiconductors: Exceptionally High Hole Mobility in 2D Antimony

电子迁移率 半导体 化学 单层 带隙 凝聚态物理 电子结构 直接和间接带隙 散射 电子能带结构 载流子 电子 光电子学 化学物理 计算化学 材料科学 物理 光学 量子力学 无机化学 生物化学
作者
Long Cheng,Chenmu Zhang,Yuanyue Liu
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:141 (41): 16296-16302 被引量:81
标识
DOI:10.1021/jacs.9b05923
摘要

Two-dimensional (2D) semiconductors have very attractive properties for many applications such as photoelectrochemistry. However, a significant challenge that limits their further developments is the relatively low electron/hole mobility at room temperature. Here using the Boltzmann transport theory with the scattering rates calculated from first-principles that allow us to accurately determine the mobility, we discover an exceptionally high intrinsic mobility of holes in monolayer antimony (Sb), which is ∼1330 cm2 V-1 s-1 at room temperature, much higher than the common 2D semiconductors including MoS2, InSe, and black phosphorus in monolayer form, and is the highest among 2D materials with a band gap of >1 eV reported so far. Its high mobility and the moderate band gap make it very promising for many applications. By comparing the 2D Sb with other 2D materials in the same group, we find that the high mobility is closely related with its electronic structure, which has a sharp and deep valence band valley, and, importantly, located at the Γ point. This electronic structure not only gives rise to a high velocity for charge carriers but also leads to a small density of states for accepting the scattered carriers, particularly by eliminating the valley-valley and peak-valley scatterings that are found to be significant for other materials. This type of electronic structure thus can be used as a target feature to design/discover high-mobility 2D semiconductors. Our work provides a promising material to overcome the mobility issue and also suggests a simple and general principle for high-mobility semiconductor design/discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
NexusExplorer应助善良的血茗采纳,获得10
1秒前
能干哈密瓜完成签到,获得积分10
1秒前
2秒前
恒弟弟完成签到,获得积分10
2秒前
3秒前
NexusExplorer应助wish采纳,获得10
3秒前
苹果洋葱发布了新的文献求助10
3秒前
3秒前
英姑应助Perrylin718采纳,获得10
3秒前
JamesPei应助栀子采纳,获得10
5秒前
浮游应助栀子采纳,获得10
5秒前
naonao完成签到,获得积分10
5秒前
6秒前
好名字完成签到,获得积分10
6秒前
安德鲁完成签到,获得积分10
6秒前
8秒前
HJJHJH发布了新的文献求助10
8秒前
10秒前
10秒前
华仔应助自由飞翔采纳,获得10
13秒前
活力元冬完成签到,获得积分10
13秒前
嘛籽m完成签到 ,获得积分10
15秒前
半生瓜发布了新的文献求助10
15秒前
mochi完成签到,获得积分10
15秒前
求助人员发布了新的文献求助10
15秒前
文静的蜗牛完成签到,获得积分10
16秒前
17秒前
orixero应助Rena采纳,获得10
17秒前
luye完成签到,获得积分10
17秒前
zhangyuze完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
氧硫硒锑铋完成签到,获得积分10
17秒前
殷勤的紫槐应助C_Note采纳,获得200
17秒前
研友_VZG7GZ应助卡拉米采纳,获得10
17秒前
wish完成签到,获得积分20
18秒前
lemon完成签到,获得积分10
19秒前
0000发布了新的文献求助10
19秒前
20秒前
啦啦啦发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5434739
求助须知:如何正确求助?哪些是违规求助? 4547066
关于积分的说明 14205914
捐赠科研通 4467159
什么是DOI,文献DOI怎么找? 2448413
邀请新用户注册赠送积分活动 1439364
关于科研通互助平台的介绍 1416076