The Optimal Electronic Structure for High-Mobility 2D Semiconductors: Exceptionally High Hole Mobility in 2D Antimony

电子迁移率 半导体 化学 单层 带隙 凝聚态物理 电子结构 直接和间接带隙 散射 电子能带结构 载流子 电子 光电子学 化学物理 计算化学 材料科学 物理 光学 量子力学 无机化学 生物化学
作者
Long Cheng,Chenmu Zhang,Yuanyue Liu
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:141 (41): 16296-16302 被引量:81
标识
DOI:10.1021/jacs.9b05923
摘要

Two-dimensional (2D) semiconductors have very attractive properties for many applications such as photoelectrochemistry. However, a significant challenge that limits their further developments is the relatively low electron/hole mobility at room temperature. Here using the Boltzmann transport theory with the scattering rates calculated from first-principles that allow us to accurately determine the mobility, we discover an exceptionally high intrinsic mobility of holes in monolayer antimony (Sb), which is ∼1330 cm2 V-1 s-1 at room temperature, much higher than the common 2D semiconductors including MoS2, InSe, and black phosphorus in monolayer form, and is the highest among 2D materials with a band gap of >1 eV reported so far. Its high mobility and the moderate band gap make it very promising for many applications. By comparing the 2D Sb with other 2D materials in the same group, we find that the high mobility is closely related with its electronic structure, which has a sharp and deep valence band valley, and, importantly, located at the Γ point. This electronic structure not only gives rise to a high velocity for charge carriers but also leads to a small density of states for accepting the scattered carriers, particularly by eliminating the valley-valley and peak-valley scatterings that are found to be significant for other materials. This type of electronic structure thus can be used as a target feature to design/discover high-mobility 2D semiconductors. Our work provides a promising material to overcome the mobility issue and also suggests a simple and general principle for high-mobility semiconductor design/discovery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助Mok采纳,获得10
2秒前
3秒前
4秒前
xun完成签到,获得积分10
5秒前
我是科研狗完成签到,获得积分10
6秒前
1280065188完成签到,获得积分20
7秒前
爆米花应助wen采纳,获得10
7秒前
纪予舟发布了新的文献求助10
7秒前
7秒前
7秒前
qingzhiwu完成签到,获得积分10
7秒前
8秒前
psylan应助impending采纳,获得10
8秒前
yyanxuemin919发布了新的文献求助10
10秒前
oon完成签到,获得积分10
11秒前
12秒前
12秒前
小熊完成签到,获得积分10
12秒前
12秒前
大模型应助喜悦的如娆采纳,获得10
13秒前
pluto应助yyy采纳,获得10
13秒前
晨丶完成签到,获得积分10
13秒前
纯真万言完成签到,获得积分10
14秒前
奕苼完成签到 ,获得积分10
14秒前
Owen应助甜蜜弱采纳,获得10
14秒前
susan完成签到,获得积分10
15秒前
Mok发布了新的文献求助10
17秒前
一棵树完成签到,获得积分10
18秒前
19秒前
21秒前
健忘可愁应助疯狂的聋五采纳,获得20
24秒前
科研通AI6应助科研通管家采纳,获得10
24秒前
Hello应助科研通管家采纳,获得10
24秒前
xzy998应助科研通管家采纳,获得10
24秒前
科研通AI6应助科研通管家采纳,获得10
24秒前
Orange应助科研通管家采纳,获得10
24秒前
今后应助科研通管家采纳,获得10
24秒前
充电宝应助科研通管家采纳,获得10
24秒前
桐桐应助科研通管家采纳,获得30
24秒前
李爱国应助科研通管家采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560014
求助须知:如何正确求助?哪些是违规求助? 4645187
关于积分的说明 14674421
捐赠科研通 4586310
什么是DOI,文献DOI怎么找? 2516345
邀请新用户注册赠送积分活动 1490000
关于科研通互助平台的介绍 1460841