PEO/LAGP hybrid solid polymer electrolytes for ambient temperature lithium batteries by solvent-free, “one pot” preparation

材料科学 电解质 法拉第效率 化学工程 环氧乙烷 锂(药物) 快离子导体 陶瓷 聚合物 氧化物 复合材料 电极 化学 共聚物 物理化学 冶金 内分泌学 工程类 医学
作者
G. Piana,Federico Bella,Francesco Geobaldo,Giuseppina Meligrana,Claudio Gerbaldi
出处
期刊:Journal of energy storage [Elsevier]
卷期号:26: 100947-100947 被引量:117
标识
DOI:10.1016/j.est.2019.100947
摘要

Here, we report hybrid solid polymer electrolytes (HSPE) obtained by rapid, truly solvent-free, thus scalable preparation process. HSPE composition is very simple: a LiTFSI added poly(ethylene oxide) (PEO) polymer matrix encompassing NASICON-type Li1.5Al0.5Ge1.5(PO4)3 (LAGP) super Li+ ion conducting ceramic. Homogeneous, self-standing, mechanically robust solid electrolyte films are obtained by simply mixing in “one pot” and hot pressing the solid mixture of dry powders at moderate temperature. Noteworthy, unlike several other super ionic conductors used for composite electrolytes, LAGP is relatively stable in air atmosphere and can be processed in a dry-room, which is more favorable, cheap and scalable than Ar-filled dry glove box for industrial fabrication of safe lithium batteries. The proper, homogeneous mixing of LAGP powder, PEO and LiTFSI leads to HSPE with interesting electrochemical behavior in lab-scale lithium cells, especially under high current regimes, and even at ambient temperature. HSPE-based cells outperform the PEO-LiTFSI-based counterpart, in terms of specific capacity output (about 70% of the theoretical value retained at very high 2C rate), limited fading and excellent Coulombic efficiency (>99.5%) even at low rate. Interfacial stability issues remain to be solved, chiefly linked to the reactivity of LAGP in contact with lithium metal, but results here proposed represent a step further toward truly all-solid-state batteries conceived for high energy/power technologies, assuring safety and performance in a wide range of operating conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
aDou完成签到 ,获得积分10
1秒前
脑洞疼应助bc采纳,获得10
1秒前
NEMO发布了新的文献求助10
1秒前
李健应助mammoth采纳,获得20
1秒前
熊boy发布了新的文献求助10
1秒前
天真思雁发布了新的文献求助10
1秒前
2秒前
情怀应助蔡蔡不菜菜采纳,获得10
2秒前
shouyu29应助MADKAI采纳,获得10
3秒前
CipherSage应助MADKAI采纳,获得10
3秒前
乐乐应助MADKAI采纳,获得10
3秒前
ChangSZ应助MADKAI采纳,获得10
3秒前
乐乐应助MADKAI采纳,获得10
3秒前
小飞七应助MADKAI采纳,获得10
3秒前
Akim应助MADKAI采纳,获得20
3秒前
科研通AI5应助MADKAI采纳,获得10
3秒前
充电宝应助MADKAI采纳,获得10
3秒前
buno应助MADKAI采纳,获得10
3秒前
3秒前
小唐完成签到 ,获得积分0
5秒前
思源应助年轻的咖啡豆采纳,获得10
5秒前
7秒前
科研通AI5应助junc采纳,获得20
7秒前
绿洲完成签到,获得积分10
8秒前
8秒前
yf_zhu发布了新的文献求助10
8秒前
正直亦旋发布了新的文献求助10
8秒前
9秒前
华仔应助招财不肥采纳,获得10
9秒前
健康的梦曼完成签到 ,获得积分10
9秒前
最最最发布了新的文献求助10
9秒前
科研是什么鬼完成签到,获得积分10
11秒前
11秒前
12秒前
欢喜素阴完成签到 ,获得积分10
13秒前
yirenli完成签到,获得积分10
13秒前
希望天下0贩的0应助DAYTOY采纳,获得10
13秒前
狮子座完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762