亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Application of Deep Learning in Food: A Review

深度学习 人工智能 计算机科学 机器学习 深信不疑网络 特征工程 人工神经网络 深层神经网络 领域(数学分析) 预处理器 质量(理念) 数学 认识论 数学分析 哲学
作者
Lei Zhou,Chu Zhang,Fei Liu,Zhengjun Qiu,Yong He
出处
期刊:Comprehensive Reviews in Food Science and Food Safety [Wiley]
卷期号:18 (6): 1793-1811 被引量:384
标识
DOI:10.1111/1541-4337.12492
摘要

Abstract Deep learning has been proved to be an advanced technology for big data analysis with a large number of successful cases in image processing, speech recognition, object detection, and so on. Recently, it has also been introduced in food science and engineering. To our knowledge, this review is the first in the food domain. In this paper, we provided a brief introduction of deep learning and detailedly described the structure of some popular architectures of deep neural networks and the approaches for training a model. We surveyed dozens of articles that used deep learning as the data analysis tool to solve the problems and challenges in food domain, including food recognition, calories estimation, quality detection of fruits, vegetables, meat and aquatic products, food supply chain, and food contamination. The specific problems, the datasets, the preprocessing methods, the networks and frameworks used, the performance achieved, and the comparison with other popular solutions of each research were investigated. We also analyzed the potential of deep learning to be used as an advanced data mining tool in food sensory and consume researches. The result of our survey indicates that deep learning outperforms other methods such as manual feature extractors, conventional machine learning algorithms, and deep learning as a promising tool in food quality and safety inspection. The encouraging results in classification and regression problems achieved by deep learning will attract more research efforts to apply deep learning into the field of food in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杭啊完成签到 ,获得积分10
20秒前
大闲鱼铭一完成签到 ,获得积分10
22秒前
Fox完成签到,获得积分10
26秒前
Fox发布了新的文献求助10
29秒前
无花果应助Fox采纳,获得10
36秒前
田様应助ytangus采纳,获得30
2分钟前
大方元风完成签到 ,获得积分10
3分钟前
香蕉觅云应助YM采纳,获得10
3分钟前
虞不斜完成签到 ,获得积分10
4分钟前
冬去春来完成签到 ,获得积分10
4分钟前
4分钟前
lovelife完成签到,获得积分10
5分钟前
充电宝应助112采纳,获得10
7分钟前
Akim应助反对法v的采纳,获得10
7分钟前
虚心的麦片发布了新的文献求助200
7分钟前
7分钟前
月军完成签到,获得积分10
7分钟前
112发布了新的文献求助10
7分钟前
7分钟前
反对法v的发布了新的文献求助10
7分钟前
我是老大应助taozixiaoxiao采纳,获得10
8分钟前
8分钟前
taozixiaoxiao发布了新的文献求助10
8分钟前
慕青应助拼搏的不评采纳,获得10
10分钟前
11分钟前
害羞雨莲发布了新的文献求助10
11分钟前
虚心的麦片完成签到,获得积分10
11分钟前
小马甲应助害羞雨莲采纳,获得10
11分钟前
11分钟前
11分钟前
chiazy完成签到 ,获得积分10
11分钟前
11分钟前
草木完成签到,获得积分10
12分钟前
12分钟前
Jasper应助正直的山雁采纳,获得10
12分钟前
段誉完成签到 ,获得积分10
13分钟前
14分钟前
14分钟前
景灵松完成签到,获得积分10
14分钟前
星辰大海应助正直的山雁采纳,获得10
15分钟前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Genera Insectorum: Mantodea, Fam. Mantidæ, Subfam. Hymenopodinæ (Classic Reprint) 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3085446
求助须知:如何正确求助?哪些是违规求助? 2738299
关于积分的说明 7548877
捐赠科研通 2387920
什么是DOI,文献DOI怎么找? 1266230
科研通“疑难数据库(出版商)”最低求助积分说明 613352
版权声明 598584