Joint Optimization of Handover Control and Power Allocation Based on Multi-Agent Deep Reinforcement Learning

强化学习 基站 移交 计算机科学 用户设备 任务(项目管理) 异构网络 吞吐量 功率控制 分布式计算 计算机网络 功率(物理) 无线网络 无线 工程类 人工智能 电信 量子力学 物理 系统工程
作者
Delin Guo,Lan Tang,Xinggan Zhang,Ying‐Chang Liang
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:69 (11): 13124-13138 被引量:106
标识
DOI:10.1109/tvt.2020.3020400
摘要

In this paper, we study the handover (HO), and power allocation problem in a two-tier heterogeneous network (HetNet), which consists of a macro base station, and some millimeter-wave (mmWave) small base stations. We establish an HO management, and power allocation scheme to maximize the overall throughput while reducing the HO frequency. In particular, considering the interrelationship among decisions made by different user equipments (UEs), we first model the HO, and power allocation problem as a fully cooperative multi-agent task, in which all agents, i.e., UEs, have the same target. Then, to solve the multi-agent task, and get decentralized policies for each UE, we develop a multi-agent reinforcement learning (MARL) algorithm based on the proximal policy optimization (PPO) method, by introducing the centralized training with decentralized execution framework. That is, we use global information to train policies for each UE, and after the training is finished, each UE obtains a decentralized policy, which can be implemented only based on each UE's local observation. Specially, we introduce the counterfactual baseline to address the credit assignment problem in centralized learning. Due to the centralized training, the decentralized polices learned by multi-agent PPO (MAPPO) can work more cooperatively. Finally, the simulation results demonstrate that our method can achieve better performance comparing with other existing works.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
积极代芙完成签到,获得积分10
刚刚
1秒前
1秒前
陈陈发布了新的文献求助10
1秒前
1秒前
自己完成签到,获得积分10
2秒前
小胡发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
2秒前
小烦同学发布了新的文献求助10
2秒前
2秒前
yxlsunny完成签到,获得积分10
2秒前
3秒前
3秒前
Elijah完成签到,获得积分10
3秒前
qsq发布了新的文献求助10
3秒前
Monster完成签到,获得积分10
3秒前
yuanice999完成签到 ,获得积分10
3秒前
林夏发布了新的文献求助10
3秒前
3秒前
jesieniu完成签到,获得积分10
3秒前
酷波er应助LANQ采纳,获得10
4秒前
顾矜应助Beginner采纳,获得10
4秒前
笑笑完成签到 ,获得积分10
4秒前
隐形曼青应助大力思雁采纳,获得10
5秒前
5秒前
wyb发布了新的文献求助10
5秒前
乐乐应助李文浩采纳,获得10
5秒前
袁青寒发布了新的文献求助10
5秒前
5秒前
慕青应助hif1a采纳,获得10
5秒前
5秒前
Shan完成签到,获得积分10
6秒前
陈广辉发布了新的文献求助10
7秒前
7秒前
7秒前
幽默厉发布了新的文献求助10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5506003
求助须知:如何正确求助?哪些是违规求助? 4601533
关于积分的说明 14477031
捐赠科研通 4535471
什么是DOI,文献DOI怎么找? 2485413
邀请新用户注册赠送积分活动 1468399
关于科研通互助平台的介绍 1440873