Biomaterials for Tissue Engineering – Bioabsorbability/Degradation in Marine Biotechnology

生化工程 脚手架 组织工程 药物输送 生物相容性 再生(生物学) 纳米技术 化学 生物技术 生物医学工程 生物 材料科学 工程类 细胞生物学 有机化学
作者
Kelvii Wei Guo,Hon-Yuen Tam
出处
期刊:Encyclopedia of Marine Biotechnology 卷期号:: 827-839
标识
DOI:10.1002/9781119143802.ch33
摘要

Biomaterials are most commonly recognized as scaffolds, potentially able to perform useful functions such as (i) promoting cell attachment, survival, proliferation and differentiation while possessing minimum toxicity in the original and biodegraded/bioabsorbed forms; (ii) allowing the transport or delivery of gases, nutrients and growth factors; and (iii) offering sufficient structural support while being degradable/absorbable at appropriate rates for tissue regeneration. Biodegradable/bioabsorbable materials intended to be used as implantable drug eluting scaffolds must fulfil several requirements in order to be considered for clinical integration. They must not elicit abnormal responses in local tissues and should neither produce local nor systemic toxic or carcinogenic side-effects. First and foremost, biodegradable/bioabsorbable platforms should serve their intended scaffolding and cell-signaling functions whilst degrading/absorbing into non-toxic metabolites. Breakdown of artificially manufactured scaffolds requires rigorous toxicological evaluation of each constituent component. Particularly when ambitious strategies involving the use of composite materials with integrated trophic factors are concerned, the importance of material biocompatibility evaluation rises significantly. The desired notion of effecting synergistic actions of GF (growth factor) and other incorporated component requires careful consideration of factor concentrations and release mechanisms in order to avoid potentially harmful overdosing. It therefore remains a priority to conduct systematic and rigorous toxicological studies – both in vitro and in vivo – to (1) eliminate grossly ineffective or toxic delivery platforms in order to (2) narrow down on potentially suitable candidate technologies as well as (3) ascertain any dose or time-dependencies which may influence the materials' suitabilities. Actually, the performance of many biomaterials depends largely on their degradation/absorbability behavior since the degradation/absorbability process may affect a range of events, such as cell growth, tissue regeneration, drug release, host response and material function. Biodegradable/bioabsorbable medical materials are those with the ability of functioning for a temporary period and to subsequently degrade/absorb in physiological conditions, under a controlled mechanism, into products easily eliminated in the body's metabolic pathways. The demands for biomaterials with the above-mentioned characteristics (controlled, predictable degradation/absorbability kinetics) included a wide range of biomedical applications (such as resorbable surgical sutures, matrices for the controlled release of drugs and scaffolds for tissue engineering) are becoming more and more crucial and urgent. Therefore, the aim to provide promising potentials of marine biotechnology for biomedical materials degradation/absorbability, and the relevant potential marine biotechnology related to enzymes are reviewed. It is indicated that strategies developed to obtain biomaterials with a controlled degradation/absorbability rate should be based on molecular design principles, such as the introduction of hydrolysable bonds into polymer backbones, copolymerization and blending techniques, crosslinking and surface modification methods, and inclusion of certain additives into polymeric matrices (e.g. excipients, drugs, salts, etc.). Meanwhile, controlled degradation/absorbability of biomedical materials by marine biotechnology-potential marine enzymes will have several advantages considering the high specificity of enzymes for their substrates and also because enzyme activity can be regulated by environmental conditions (e.g. pH, temperature, the presence of certain substances, like metal ions). In addition, the degradation/absorbability kinetics can be adjusted by the amount of encapsulated enzyme into the matrix.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Aeon应助今天也学习了采纳,获得20
1秒前
1秒前
情怀应助aaaab采纳,获得10
2秒前
3秒前
shen发布了新的文献求助10
4秒前
Orange应助后手歪歪采纳,获得10
4秒前
馆长举报闪闪幻露求助涉嫌违规
4秒前
素简发布了新的文献求助10
4秒前
Elcric发布了新的文献求助10
5秒前
5秒前
8秒前
自然的亦巧完成签到,获得积分10
9秒前
Ava应助276860采纳,获得10
9秒前
素简完成签到,获得积分10
11秒前
11秒前
he完成签到 ,获得积分10
11秒前
小包子完成签到,获得积分10
11秒前
12秒前
orixero应助Estrella12138采纳,获得10
14秒前
小宋完成签到,获得积分10
15秒前
毛毛发布了新的文献求助10
15秒前
15秒前
馆长应助rosemary采纳,获得10
16秒前
隐形曼青应助medai采纳,获得10
17秒前
17秒前
YY-Bubble发布了新的文献求助10
17秒前
18秒前
asd发布了新的文献求助10
18秒前
长长的名字完成签到 ,获得积分10
18秒前
田田完成签到 ,获得积分10
19秒前
Jasper应助大胆的平蓝采纳,获得10
20秒前
tudou发布了新的文献求助10
20秒前
虎正凯完成签到 ,获得积分10
21秒前
踏歌发布了新的文献求助10
22秒前
Moon关注了科研通微信公众号
22秒前
23秒前
276860发布了新的文献求助10
23秒前
liangliu完成签到 ,获得积分10
23秒前
赘婿应助Ballas采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 1200
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4943511
求助须知:如何正确求助?哪些是违规求助? 4208626
关于积分的说明 13083631
捐赠科研通 3988108
什么是DOI,文献DOI怎么找? 2183472
邀请新用户注册赠送积分活动 1199004
关于科研通互助平台的介绍 1111654