Biomaterials for Tissue Engineering – Bioabsorbability/Degradation in Marine Biotechnology

生化工程 脚手架 组织工程 药物输送 生物相容性 再生(生物学) 纳米技术 化学 生物技术 生物医学工程 生物 材料科学 工程类 细胞生物学 有机化学
作者
Kelvii Wei Guo,Hon-Yuen Tam
出处
期刊:Encyclopedia of Marine Biotechnology 卷期号:: 827-839
标识
DOI:10.1002/9781119143802.ch33
摘要

Biomaterials are most commonly recognized as scaffolds, potentially able to perform useful functions such as (i) promoting cell attachment, survival, proliferation and differentiation while possessing minimum toxicity in the original and biodegraded/bioabsorbed forms; (ii) allowing the transport or delivery of gases, nutrients and growth factors; and (iii) offering sufficient structural support while being degradable/absorbable at appropriate rates for tissue regeneration. Biodegradable/bioabsorbable materials intended to be used as implantable drug eluting scaffolds must fulfil several requirements in order to be considered for clinical integration. They must not elicit abnormal responses in local tissues and should neither produce local nor systemic toxic or carcinogenic side-effects. First and foremost, biodegradable/bioabsorbable platforms should serve their intended scaffolding and cell-signaling functions whilst degrading/absorbing into non-toxic metabolites. Breakdown of artificially manufactured scaffolds requires rigorous toxicological evaluation of each constituent component. Particularly when ambitious strategies involving the use of composite materials with integrated trophic factors are concerned, the importance of material biocompatibility evaluation rises significantly. The desired notion of effecting synergistic actions of GF (growth factor) and other incorporated component requires careful consideration of factor concentrations and release mechanisms in order to avoid potentially harmful overdosing. It therefore remains a priority to conduct systematic and rigorous toxicological studies – both in vitro and in vivo – to (1) eliminate grossly ineffective or toxic delivery platforms in order to (2) narrow down on potentially suitable candidate technologies as well as (3) ascertain any dose or time-dependencies which may influence the materials' suitabilities. Actually, the performance of many biomaterials depends largely on their degradation/absorbability behavior since the degradation/absorbability process may affect a range of events, such as cell growth, tissue regeneration, drug release, host response and material function. Biodegradable/bioabsorbable medical materials are those with the ability of functioning for a temporary period and to subsequently degrade/absorb in physiological conditions, under a controlled mechanism, into products easily eliminated in the body's metabolic pathways. The demands for biomaterials with the above-mentioned characteristics (controlled, predictable degradation/absorbability kinetics) included a wide range of biomedical applications (such as resorbable surgical sutures, matrices for the controlled release of drugs and scaffolds for tissue engineering) are becoming more and more crucial and urgent. Therefore, the aim to provide promising potentials of marine biotechnology for biomedical materials degradation/absorbability, and the relevant potential marine biotechnology related to enzymes are reviewed. It is indicated that strategies developed to obtain biomaterials with a controlled degradation/absorbability rate should be based on molecular design principles, such as the introduction of hydrolysable bonds into polymer backbones, copolymerization and blending techniques, crosslinking and surface modification methods, and inclusion of certain additives into polymeric matrices (e.g. excipients, drugs, salts, etc.). Meanwhile, controlled degradation/absorbability of biomedical materials by marine biotechnology-potential marine enzymes will have several advantages considering the high specificity of enzymes for their substrates and also because enzyme activity can be regulated by environmental conditions (e.g. pH, temperature, the presence of certain substances, like metal ions). In addition, the degradation/absorbability kinetics can be adjusted by the amount of encapsulated enzyme into the matrix.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
羊羊发布了新的文献求助10
1秒前
Hemingwayway发布了新的文献求助10
1秒前
潘小科发布了新的文献求助10
2秒前
Lijunjie完成签到,获得积分10
2秒前
qmx发布了新的文献求助10
3秒前
是十二呀关注了科研通微信公众号
3秒前
zgghbb完成签到,获得积分20
4秒前
4秒前
繁星完成签到,获得积分10
4秒前
是微微发布了新的文献求助10
5秒前
丰盛的煎饼应助77采纳,获得20
5秒前
落星发布了新的文献求助10
6秒前
6秒前
Hemingwayway完成签到,获得积分10
7秒前
7秒前
诚心谷南完成签到,获得积分20
8秒前
无花果应助是微微采纳,获得10
8秒前
碎片发布了新的文献求助10
9秒前
lairm10完成签到,获得积分10
9秒前
CGFHEMAN完成签到 ,获得积分10
10秒前
乐乐完成签到,获得积分10
10秒前
zgghbb发布了新的文献求助10
11秒前
13秒前
AKACrown发布了新的文献求助10
14秒前
汉堡包应助科研通管家采纳,获得10
14秒前
科目三应助科研通管家采纳,获得10
14秒前
rosalieshi应助科研通管家采纳,获得50
14秒前
传奇3应助科研通管家采纳,获得20
14秒前
常涑完成签到,获得积分10
15秒前
Jasper应助科研通管家采纳,获得10
15秒前
Jasper应助科研通管家采纳,获得10
15秒前
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
JamesPei应助科研通管家采纳,获得10
15秒前
rosalieshi应助科研通管家采纳,获得30
15秒前
华仔应助科研通管家采纳,获得10
16秒前
orixero应助科研通管家采纳,获得10
16秒前
无花果应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
Singularity应助科研通管家采纳,获得10
16秒前
高分求助中
中国国际图书贸易总公司40周年纪念文集 大事记1949-1987 2000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
草地生态学 880
Threaded Harmony: A Sustainable Approach to Fashion 799
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3058079
求助须知:如何正确求助?哪些是违规求助? 2714263
关于积分的说明 7439873
捐赠科研通 2359489
什么是DOI,文献DOI怎么找? 1250095
科研通“疑难数据库(出版商)”最低求助积分说明 607383
版权声明 596392