亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Logistic LASSO Regression for Dietary Intakes and Breast Cancer

逻辑回归 Lasso(编程语言) 乳腺癌 回归 医学 统计 回归分析 肿瘤科 癌症 内科学 数学 计算机科学 万维网
作者
Archana J. McEligot,Valerie Poynor,Rishabh Sharma,Anand Panangadan
出处
期刊:Nutrients [MDPI AG]
卷期号:12 (9): 2652-2652 被引量:215
标识
DOI:10.3390/nu12092652
摘要

A multitude of dietary factors from dietary fat to macro and micronutrients intakes have been associated with breast cancer, yet data are still equivocal. Therefore, utilizing data from the large, multi-year, cross-sectional National Health and Nutrition Examination Survey (NHANES), we applied a novel, modern statistical shrinkage technique, logistic least absolute shrinkage and selection operator (LASSO) regression, to examine the association between dietary intakes in women, ≥50 years, with self-reported breast cancer (n = 286) compared with women without self-reported breast cancer (1144) from the 1999–2010 NHANES cycle. Logistic LASSO regression was used to examine the relationship between twenty-nine variables, including dietary variables from food, as well as well-established/known breast cancer risk factors, and to subsequently identify the most relevant variables associated with self-reported breast cancer. We observed that as the penalty factor (λ) increased in the logistic LASSO regression, well-established breast cancer risk factors, including age (β = 0.83) and parity (β = −0.05) remained in the model. For dietary macro and micronutrient intakes, only vitamin B12 (β = 0.07) was positively associated with self-reported breast cancer. Caffeine (β = −0.01) and alcohol (β = 0.03) use also continued to remain in the model. These data suggest that a diet high in vitamin B12, as well as alcohol use may be associated with self-reported breast cancer. Nonetheless, additional prospective studies should apply more recent statistical techniques to dietary data and cancer outcomes to replicate and confirm the present findings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助xiaowei采纳,获得10
11秒前
14秒前
20秒前
xiaowei发布了新的文献求助10
23秒前
okt111完成签到,获得积分10
23秒前
Pattis完成签到 ,获得积分10
30秒前
33秒前
孙嘉遇发布了新的文献求助10
40秒前
Ava应助孙嘉遇采纳,获得10
57秒前
1分钟前
Marciu33发布了新的文献求助10
1分钟前
今后应助mmm采纳,获得10
1分钟前
flyinthesky完成签到,获得积分10
1分钟前
Akim应助morena采纳,获得10
1分钟前
盛夏如花发布了新的文献求助10
1分钟前
lxl完成签到,获得积分10
1分钟前
xiaowei完成签到,获得积分20
1分钟前
SciGPT应助小唐采纳,获得10
1分钟前
张晓祁完成签到,获得积分10
1分钟前
生动的沛白完成签到 ,获得积分10
2分钟前
爆米花应助搞怪的砖家采纳,获得10
2分钟前
JamesPei应助ABC的风格采纳,获得10
2分钟前
李y梅子完成签到 ,获得积分10
2分钟前
2分钟前
yueying完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
猫橙密语发布了新的文献求助80
2分钟前
2分钟前
ABC的风格发布了新的文献求助10
2分钟前
2分钟前
3分钟前
3分钟前
脑洞疼应助潘瑞采纳,获得10
3分钟前
图图发布了新的文献求助10
3分钟前
3分钟前
搞怪的砖家完成签到,获得积分20
3分钟前
3分钟前
zqq完成签到,获得积分0
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5657897
求助须知:如何正确求助?哪些是违规求助? 4813963
关于积分的说明 15080602
捐赠科研通 4816131
什么是DOI,文献DOI怎么找? 2577136
邀请新用户注册赠送积分活动 1532156
关于科研通互助平台的介绍 1490689