Structure evolution of oxygen removal from porous carbon for optimizing supercapacitor performance

超级电容器 电解质 多孔性 电化学 材料科学 化学工程 碳纤维 析氧 氧气 微观结构 电极 化学 复合材料 有机化学 工程类 复合数 物理化学
作者
Si-Ting Yuan,Xianhong Huang,Hao Wang,Lijing Xie,Jiayao Cheng,Qingqiang Kong,Guohua Sun,Cheng‐Meng Chen
出处
期刊:Journal of Energy Chemistry [Elsevier]
卷期号:51: 396-404 被引量:90
标识
DOI:10.1016/j.jechem.2020.04.004
摘要

The presence of oxygen functional groups is detrimental to the capacitive performance of porous carbon electrode in organic electrolyte. In this regards, hydrogen thermal reduction has been demonstrated effective approach in removing the unstable surface oxygen while maintaining the high porosity of carbon matrix. However, the exact evolution mechanism of various oxygen species during this process, as well as the correlation with electrochemical properties, is still under development. Herein, biomass-based porous carbon is adopted as the model material to trace its structure evolution of oxygen removal under hydrogen thermal reduction process with the temperature range of 400–800 °C. The optimum microstructure with low oxygen content of 0.90% and proper pore size distribution was achieved at 700°C. XPS, TPR-MS and Boehm titration results indicate that the oxygen elimination undergoes three distinctive stages (intermolecular dehydration, hydrogenation and decomposition reactions). The optimum microstructure with low oxygen content of 0.90% and proper pore size distribution was achieved at 700 °C. Benefiting from the stable electrochemical interface and the optimized porous structure, the as-obtained HAC-700 exhibit significantly suppressed self-discharge and leak current, with improved cycling stability, which is attributable to the stabilization of electrochemical interface between carbon surface and electrolyte. The result provides insights for rational design of surface chemistry for high-performance carbon electrode towards advanced energy storage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gc发布了新的文献求助30
1秒前
1秒前
seattle发布了新的文献求助10
1秒前
ch3oh完成签到,获得积分10
1秒前
hetao286发布了新的文献求助10
1秒前
zzy发布了新的文献求助10
2秒前
CipherSage应助qian采纳,获得10
2秒前
2秒前
2秒前
4秒前
TK完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
852应助嘻嘻采纳,获得10
6秒前
jcm发布了新的文献求助10
7秒前
贤来无事完成签到 ,获得积分10
8秒前
安静的凌萱完成签到,获得积分10
8秒前
8秒前
8秒前
Yu发布了新的文献求助10
8秒前
11发布了新的文献求助10
8秒前
gpy应助zzy采纳,获得10
9秒前
9秒前
Orange应助么么叽采纳,获得10
10秒前
LL应助研新采纳,获得10
10秒前
科目三应助SUN采纳,获得10
10秒前
天宇发布了新的文献求助10
11秒前
元小夏发布了新的文献求助20
11秒前
wwwying发布了新的文献求助10
12秒前
12秒前
sevenseven发布了新的文献求助10
12秒前
13秒前
淡淡红茶发布了新的文献求助10
14秒前
man应助MC采纳,获得20
14秒前
11完成签到,获得积分10
14秒前
岁月轮回发布了新的文献求助10
14秒前
会厌完成签到 ,获得积分10
14秒前
16秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3563859
求助须知:如何正确求助?哪些是违规求助? 3137060
关于积分的说明 9420785
捐赠科研通 2837499
什么是DOI,文献DOI怎么找? 1559874
邀请新用户注册赠送积分活动 729212
科研通“疑难数据库(出版商)”最低求助积分说明 717187