RadioUNet: Fast Radio Map Estimation With Convolutional Neural Networks

发射机 计算机科学 调度(生产过程) 卷积神经网络 人工神经网络 解码方法 功能(生物学) 算法 实时计算 点(几何) 人工智能 频道(广播) 电信 数学优化 数学 进化生物学 生物 几何学
作者
Ron Levie,Çağkan Yapar,Gitta Kutyniok,Giuseppe Caire
出处
期刊:IEEE Transactions on Wireless Communications [Institute of Electrical and Electronics Engineers]
卷期号:20 (6): 4001-4015 被引量:116
标识
DOI:10.1109/twc.2021.3054977
摘要

In this paper we propose a highly efficient and very accurate deep learning method for estimating the propagation pathloss from a point x (transmitter location) to any point y on a planar domain. For applications such as user-cell site association and device-to-device link scheduling, an accurate knowledge of the pathloss function for all pairs of transmitter-receiver locations is very important. Commonly used statistical models approximate the pathloss as a decaying function of the distance between transmitter and receiver. However, in realistic propagation environments characterized by the presence of buildings, street canyons, and objects at different heights, such radial-symmetric functions yield very misleading results. In this paper we show that properly designed and trained deep neural networks are able to learn how to estimate the pathloss function, given an urban environment, in a very accurate and computationally efficient manner. Our proposed method, termed RadioUNet, learns from a physical simulation dataset, and generates pathloss estimations that are very close to the simulations, but are much faster to compute for real-time applications. Moreover, we propose methods for transferring what was learned from simulations to real-life. Numerical results show that our method significantly outperforms previously proposed methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
hi应助qwe采纳,获得10
3秒前
3秒前
4秒前
节节高完成签到,获得积分10
5秒前
英俊芷发布了新的文献求助10
5秒前
adfadf发布了新的文献求助10
6秒前
青衣北风发布了新的文献求助10
7秒前
yolo发布了新的文献求助10
8秒前
wangmp66完成签到,获得积分10
8秒前
Akim应助yusheng采纳,获得10
9秒前
9秒前
10秒前
seeuu驳回了ding应助
10秒前
12秒前
12秒前
12秒前
pan完成签到,获得积分10
16秒前
粗犷的凌兰应助燕子采纳,获得30
16秒前
17秒前
Carpe发布了新的文献求助10
17秒前
yusheng完成签到,获得积分10
18秒前
20秒前
核桃完成签到,获得积分0
20秒前
okokk完成签到,获得积分10
20秒前
yusheng发布了新的文献求助10
22秒前
liu完成签到,获得积分10
25秒前
27秒前
Carpe完成签到,获得积分20
27秒前
略略略完成签到,获得积分10
28秒前
28秒前
852应助liu采纳,获得10
28秒前
yolo完成签到,获得积分10
29秒前
Ava应助adfadf采纳,获得10
29秒前
萧水白应助fountainli采纳,获得10
29秒前
咸鱼好闲完成签到 ,获得积分10
30秒前
xxx完成签到,获得积分20
30秒前
狂野谷冬完成签到,获得积分10
30秒前
qjy完成签到,获得积分10
30秒前
yznfly应助张张采纳,获得30
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966444
求助须知:如何正确求助?哪些是违规求助? 3511885
关于积分的说明 11160462
捐赠科研通 3246599
什么是DOI,文献DOI怎么找? 1793425
邀请新用户注册赠送积分活动 874451
科研通“疑难数据库(出版商)”最低求助积分说明 804388