SRAF placement with generative adversarial network

计算机科学 对抗制 生成对抗网络 生成语法 理论计算机科学 人工智能 算法 深度学习
作者
Weilun Ciou,Tony Hu,Yi-Yien Tsai,Terry Hsuan,Elvis Yang,Tahone Yang,K.C. Chen
标识
DOI:10.1117/12.2581334
摘要

As the design layout of integrated circuits (ICs) is continually scaling down, sub-resolution assist features (SRAF) have been extensively used in resolution enhancement technique (RET) applications to enhance lithography printing fidelity and widen the manufacturing process window (PW). With conventional SRAF insertion techniques, rule-based SRAF (RB-SRAF) and model-based SRAF (MB-SRAF) methods have been widely adopted. The typical RB-SRAF is an efficient method to generate SRAFs consistently for simple designs, but cannot be optimized for multiple critical patterns or complex layout schemes. Although MB-SRAF is able to achieve better process window as well as reducing conflicts between placement rules and clean-up rules, many iterations for convergence and extremely high computational costs are required. The explosion of machine learning techniques could facilitate the complex processes of mask optimization, such as SRAF insertion. In this paper, generative adversarial network was studied on a Via layer of advanced 3D NAND flash memory, by training target images and Inverse Lithography Technology (ILT) images of target patterns. GAN models, pix2pix and CycleGAN, were first trained and then utilized to synthesize realistic ILT images. These ILT images were eventually translated to polygons of SRAF with simplification process and mask manufacturing rules check (MRC) constraints. The simulation results demonstrate that CycleGAN approach can place SRAF with comparable performance to mask optimization (MO) result which was optimized by the Tachyon Source-Mask Optimizer (SMO). Most importantly, the efficiency of SRAF insertion can be enhanced significantly through the generative adversarial network.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宋依依发布了新的文献求助10
刚刚
霸气剑通完成签到,获得积分10
刚刚
慕青应助逝水无痕采纳,获得10
刚刚
2秒前
腼腆的雅绿完成签到,获得积分20
4秒前
斯文败类应助风音赫莱森采纳,获得30
4秒前
5秒前
5秒前
5秒前
7秒前
7秒前
不懂完成签到,获得积分10
8秒前
9秒前
9秒前
Eom发布了新的文献求助10
10秒前
yoyo完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
mabenchem完成签到,获得积分20
11秒前
12秒前
KKKK完成签到,获得积分10
12秒前
sunzhengkui完成签到,获得积分10
13秒前
务实的夏菡完成签到,获得积分10
13秒前
cfy完成签到,获得积分10
14秒前
KKKK发布了新的文献求助10
15秒前
mabenchem发布了新的文献求助10
15秒前
Marilinta发布了新的文献求助10
15秒前
Puffkten发布了新的文献求助10
15秒前
15秒前
16秒前
小蘑菇应助小寒同学采纳,获得10
16秒前
霸气剑通发布了新的文献求助10
17秒前
17秒前
Akim应助浮浮世世采纳,获得10
18秒前
18秒前
19秒前
19秒前
shen发布了新的文献求助10
21秒前
21秒前
asdfzxcv应助Li采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637725
求助须知:如何正确求助?哪些是违规求助? 4743904
关于积分的说明 15000090
捐赠科研通 4795864
什么是DOI,文献DOI怎么找? 2562227
邀请新用户注册赠送积分活动 1521731
关于科研通互助平台的介绍 1481704