SRAF placement with generative adversarial network

计算机科学 对抗制 生成对抗网络 生成语法 理论计算机科学 人工智能 算法 深度学习
作者
Weilun Ciou,Tony Hu,Yi-Yien Tsai,Terry Hsuan,Elvis Yang,Tahone Yang,K.C. Chen
标识
DOI:10.1117/12.2581334
摘要

As the design layout of integrated circuits (ICs) is continually scaling down, sub-resolution assist features (SRAF) have been extensively used in resolution enhancement technique (RET) applications to enhance lithography printing fidelity and widen the manufacturing process window (PW). With conventional SRAF insertion techniques, rule-based SRAF (RB-SRAF) and model-based SRAF (MB-SRAF) methods have been widely adopted. The typical RB-SRAF is an efficient method to generate SRAFs consistently for simple designs, but cannot be optimized for multiple critical patterns or complex layout schemes. Although MB-SRAF is able to achieve better process window as well as reducing conflicts between placement rules and clean-up rules, many iterations for convergence and extremely high computational costs are required. The explosion of machine learning techniques could facilitate the complex processes of mask optimization, such as SRAF insertion. In this paper, generative adversarial network was studied on a Via layer of advanced 3D NAND flash memory, by training target images and Inverse Lithography Technology (ILT) images of target patterns. GAN models, pix2pix and CycleGAN, were first trained and then utilized to synthesize realistic ILT images. These ILT images were eventually translated to polygons of SRAF with simplification process and mask manufacturing rules check (MRC) constraints. The simulation results demonstrate that CycleGAN approach can place SRAF with comparable performance to mask optimization (MO) result which was optimized by the Tachyon Source-Mask Optimizer (SMO). Most importantly, the efficiency of SRAF insertion can be enhanced significantly through the generative adversarial network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酚羟基装醇完成签到,获得积分10
1秒前
亚当完成签到 ,获得积分10
1秒前
清清甜应助lzh采纳,获得10
1秒前
永远55度发布了新的文献求助10
2秒前
6666666发布了新的文献求助10
2秒前
童话完成签到,获得积分10
2秒前
2秒前
sujinyu发布了新的文献求助10
2秒前
lkk完成签到,获得积分10
3秒前
勤勤的新星完成签到,获得积分10
3秒前
3秒前
科研小牛马完成签到,获得积分10
3秒前
guohuameike完成签到,获得积分10
4秒前
zanedou完成签到,获得积分10
4秒前
红绿蓝完成签到 ,获得积分10
4秒前
4秒前
希望天下0贩的0应助ggdio采纳,获得10
4秒前
NANFENGSUSU发布了新的文献求助10
5秒前
5秒前
天天快乐应助justonce采纳,获得10
5秒前
5秒前
5秒前
你去打输出关注了科研通微信公众号
5秒前
6秒前
阳光明媚完成签到,获得积分10
6秒前
Akim应助胡小壳采纳,获得10
6秒前
7秒前
青灿笑完成签到,获得积分10
8秒前
小超人发布了新的文献求助30
8秒前
8秒前
落落完成签到 ,获得积分10
8秒前
8秒前
永远55度完成签到,获得积分10
9秒前
9秒前
草履虫发布了新的文献求助10
10秒前
xj305完成签到,获得积分10
10秒前
11秒前
11秒前
王一g完成签到,获得积分10
11秒前
lalala发布了新的文献求助10
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016068
求助须知:如何正确求助?哪些是违规求助? 3556043
关于积分的说明 11319836
捐赠科研通 3289063
什么是DOI,文献DOI怎么找? 1812373
邀请新用户注册赠送积分活动 887923
科研通“疑难数据库(出版商)”最低求助积分说明 812044