SRAF placement with generative adversarial network

计算机科学 对抗制 生成对抗网络 生成语法 理论计算机科学 人工智能 算法 深度学习
作者
Weilun Ciou,Tony Hu,Yi-Yien Tsai,Terry Hsuan,Elvis Yang,Tahone Yang,K.C. Chen
标识
DOI:10.1117/12.2581334
摘要

As the design layout of integrated circuits (ICs) is continually scaling down, sub-resolution assist features (SRAF) have been extensively used in resolution enhancement technique (RET) applications to enhance lithography printing fidelity and widen the manufacturing process window (PW). With conventional SRAF insertion techniques, rule-based SRAF (RB-SRAF) and model-based SRAF (MB-SRAF) methods have been widely adopted. The typical RB-SRAF is an efficient method to generate SRAFs consistently for simple designs, but cannot be optimized for multiple critical patterns or complex layout schemes. Although MB-SRAF is able to achieve better process window as well as reducing conflicts between placement rules and clean-up rules, many iterations for convergence and extremely high computational costs are required. The explosion of machine learning techniques could facilitate the complex processes of mask optimization, such as SRAF insertion. In this paper, generative adversarial network was studied on a Via layer of advanced 3D NAND flash memory, by training target images and Inverse Lithography Technology (ILT) images of target patterns. GAN models, pix2pix and CycleGAN, were first trained and then utilized to synthesize realistic ILT images. These ILT images were eventually translated to polygons of SRAF with simplification process and mask manufacturing rules check (MRC) constraints. The simulation results demonstrate that CycleGAN approach can place SRAF with comparable performance to mask optimization (MO) result which was optimized by the Tachyon Source-Mask Optimizer (SMO). Most importantly, the efficiency of SRAF insertion can be enhanced significantly through the generative adversarial network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
生病的狗发布了新的文献求助30
1秒前
甜甜的问芙完成签到 ,获得积分10
2秒前
李爱国应助学术laji采纳,获得10
5秒前
打打应助团子采纳,获得10
5秒前
7秒前
优雅小橘子完成签到 ,获得积分10
9秒前
Poer发布了新的文献求助10
11秒前
生病的狗完成签到,获得积分10
13秒前
Cc发布了新的文献求助10
13秒前
汉堡包应助自在自然采纳,获得10
14秒前
务实的菓完成签到 ,获得积分10
15秒前
研友_Z7Xdl8完成签到,获得积分0
16秒前
杨一完成签到 ,获得积分10
17秒前
杨白秋完成签到,获得积分10
19秒前
薛冰雪发布了新的文献求助10
20秒前
芋圆曲奇小丸子关注了科研通微信公众号
22秒前
22秒前
22秒前
DD完成签到,获得积分10
23秒前
Lucas应助蜜蜜采纳,获得30
24秒前
团子发布了新的文献求助10
26秒前
玖梦恨别离完成签到 ,获得积分10
26秒前
复杂柔发布了新的文献求助10
27秒前
大力的小熊猫完成签到 ,获得积分10
28秒前
28秒前
s33完成签到,获得积分20
29秒前
Poer完成签到,获得积分20
29秒前
Jolleyhaha完成签到 ,获得积分10
30秒前
LHL完成签到,获得积分10
31秒前
薛冰雪完成签到,获得积分20
31秒前
顾矜应助Matthewwt采纳,获得10
32秒前
suan发布了新的文献求助10
32秒前
33秒前
大个应助光能使者采纳,获得10
34秒前
34秒前
35秒前
AU完成签到 ,获得积分10
35秒前
yml完成签到 ,获得积分10
35秒前
大尾巴白完成签到 ,获得积分10
36秒前
Ava应助小饼干采纳,获得10
37秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165336
求助须知:如何正确求助?哪些是违规求助? 2816343
关于积分的说明 7912340
捐赠科研通 2475963
什么是DOI,文献DOI怎么找? 1318480
科研通“疑难数据库(出版商)”最低求助积分说明 632171
版权声明 602388