SRAF placement with generative adversarial network

计算机科学 对抗制 生成对抗网络 生成语法 理论计算机科学 人工智能 算法 深度学习
作者
Weilun Ciou,Tony Hu,Yi-Yien Tsai,Terry Hsuan,Elvis Yang,Tahone Yang,K.C. Chen
标识
DOI:10.1117/12.2581334
摘要

As the design layout of integrated circuits (ICs) is continually scaling down, sub-resolution assist features (SRAF) have been extensively used in resolution enhancement technique (RET) applications to enhance lithography printing fidelity and widen the manufacturing process window (PW). With conventional SRAF insertion techniques, rule-based SRAF (RB-SRAF) and model-based SRAF (MB-SRAF) methods have been widely adopted. The typical RB-SRAF is an efficient method to generate SRAFs consistently for simple designs, but cannot be optimized for multiple critical patterns or complex layout schemes. Although MB-SRAF is able to achieve better process window as well as reducing conflicts between placement rules and clean-up rules, many iterations for convergence and extremely high computational costs are required. The explosion of machine learning techniques could facilitate the complex processes of mask optimization, such as SRAF insertion. In this paper, generative adversarial network was studied on a Via layer of advanced 3D NAND flash memory, by training target images and Inverse Lithography Technology (ILT) images of target patterns. GAN models, pix2pix and CycleGAN, were first trained and then utilized to synthesize realistic ILT images. These ILT images were eventually translated to polygons of SRAF with simplification process and mask manufacturing rules check (MRC) constraints. The simulation results demonstrate that CycleGAN approach can place SRAF with comparable performance to mask optimization (MO) result which was optimized by the Tachyon Source-Mask Optimizer (SMO). Most importantly, the efficiency of SRAF insertion can be enhanced significantly through the generative adversarial network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南瓜完成签到 ,获得积分10
刚刚
eric曾完成签到,获得积分10
1秒前
2秒前
2秒前
3秒前
韦威风完成签到,获得积分10
3秒前
请叫我风吹麦浪应助cc采纳,获得30
3秒前
所所应助Ll采纳,获得10
3秒前
阳光的道消完成签到,获得积分10
4秒前
4秒前
4秒前
豌豆射手完成签到,获得积分10
5秒前
5秒前
桑桑发布了新的文献求助10
5秒前
领导范儿应助幸福胡萝卜采纳,获得10
6秒前
明理的小甜瓜完成签到,获得积分10
7秒前
7秒前
33333完成签到,获得积分20
7秒前
7秒前
7秒前
756发布了新的文献求助10
7秒前
8秒前
科研通AI5应助GHOST采纳,获得10
8秒前
8秒前
罗实完成签到,获得积分10
9秒前
科研通AI2S应助k7采纳,获得10
9秒前
9秒前
粱自中完成签到,获得积分10
9秒前
luca发布了新的文献求助30
9秒前
9秒前
10秒前
唉呦嘿完成签到,获得积分10
10秒前
dan1029发布了新的文献求助10
11秒前
mc完成签到,获得积分10
11秒前
12秒前
zhaoyue完成签到,获得积分20
12秒前
科研通AI2S应助neil采纳,获得10
13秒前
宇宙无敌完成签到 ,获得积分10
14秒前
SY发布了新的文献求助10
14秒前
Lucas应助小田采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762