SRAF placement with generative adversarial network

计算机科学 对抗制 生成对抗网络 生成语法 理论计算机科学 人工智能 算法 深度学习
作者
Weilun Ciou,Tony Hu,Yi-Yien Tsai,Terry Hsuan,Elvis Yang,Tahone Yang,K.C. Chen
标识
DOI:10.1117/12.2581334
摘要

As the design layout of integrated circuits (ICs) is continually scaling down, sub-resolution assist features (SRAF) have been extensively used in resolution enhancement technique (RET) applications to enhance lithography printing fidelity and widen the manufacturing process window (PW). With conventional SRAF insertion techniques, rule-based SRAF (RB-SRAF) and model-based SRAF (MB-SRAF) methods have been widely adopted. The typical RB-SRAF is an efficient method to generate SRAFs consistently for simple designs, but cannot be optimized for multiple critical patterns or complex layout schemes. Although MB-SRAF is able to achieve better process window as well as reducing conflicts between placement rules and clean-up rules, many iterations for convergence and extremely high computational costs are required. The explosion of machine learning techniques could facilitate the complex processes of mask optimization, such as SRAF insertion. In this paper, generative adversarial network was studied on a Via layer of advanced 3D NAND flash memory, by training target images and Inverse Lithography Technology (ILT) images of target patterns. GAN models, pix2pix and CycleGAN, were first trained and then utilized to synthesize realistic ILT images. These ILT images were eventually translated to polygons of SRAF with simplification process and mask manufacturing rules check (MRC) constraints. The simulation results demonstrate that CycleGAN approach can place SRAF with comparable performance to mask optimization (MO) result which was optimized by the Tachyon Source-Mask Optimizer (SMO). Most importantly, the efficiency of SRAF insertion can be enhanced significantly through the generative adversarial network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
无花果应助felix采纳,获得10
1秒前
李飞完成签到,获得积分10
2秒前
2秒前
无花果应助寒江雪采纳,获得10
3秒前
3秒前
3秒前
丘比特应助憨憨采纳,获得10
4秒前
6秒前
ino发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
8秒前
AQI发布了新的文献求助10
9秒前
11秒前
炽天使发布了新的文献求助10
11秒前
李飞发布了新的文献求助30
11秒前
科研通AI6应助娇娇尔采纳,获得10
12秒前
曹杨磊完成签到,获得积分10
12秒前
sssss完成签到 ,获得积分10
12秒前
12秒前
萱棚发布了新的文献求助10
12秒前
小值钱完成签到,获得积分10
13秒前
15秒前
筱芯爱上神完成签到 ,获得积分10
15秒前
16秒前
寒江雪发布了新的文献求助10
17秒前
19秒前
19秒前
20秒前
20秒前
盼盼完成签到,获得积分20
20秒前
21秒前
贾明阳发布了新的文献求助10
23秒前
24秒前
盼盼发布了新的文献求助10
24秒前
wuliqun发布了新的文献求助10
24秒前
Seven完成签到 ,获得积分10
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5421901
求助须知:如何正确求助?哪些是违规求助? 4536896
关于积分的说明 14155394
捐赠科研通 4453475
什么是DOI,文献DOI怎么找? 2442890
邀请新用户注册赠送积分活动 1434308
关于科研通互助平台的介绍 1411402